Colonization of selected host plant species by Burgundy truffle under greenhouse conditions
Mykoryzacja truflą burgundzką wybranych gatunków roślin żywicielskich w warunkach szklarniowych
Sylwan 166 (8):512-523, 2022
DOI:
https://doi.org/10.26202/sylwan.2022049Available online: 2022-12-16
Open Access (CC-BY)
Agroforestry • coniferous tree species • deciduous tree species • ectomycorrhiza • Tuber aestivum
Burgundy truffle Tuber aestivum Vittad. syn. T. uncinatum Chatin can be a profitable agroforestry crop outside the Mediterranean region. Truffle fungi grow symbiotically as ectomycorrhizae on the roots of host trees, notably hazels and oaks. In some parts of Poland, conditions appear favourable for cultivation of Burgundy truffle, but how management practices affect truffle establishment and fruiting remains to be studied. In a greenhouse study, we tested two inoculation techniques that differed in the method and timing of inoculum application on mycorrhizal colonization of Pinus sylvestris L., Larix decidua Mill., Quercus robur L., and Fagus sylvatica L. We found that the method of T. aestivum spore application under greenhouse conditions had no significant effect on mycorrhization efficiency, regardless of host plant species. Mycorrhization of larch, pine, beech, and oak seedlings by T. aestivum did not differ in time to infection or degree of mycorrhizal root infection. However, oak seedlings had a higher degree of mycorrhization, which explains the popularity of this species in truffle plantations.
Agerer, R., 1987-2006. Colour Atlas of Ectomycorrhizae. Schwäbisch-Gmünd, München: Einhorn-Verlag Eduard Dietenberger GmbH.
Agerer, R., Rambold, G., 2004-2007. DEEMY-An information system for characterization and determination of ectomycorrhizae. Munich: Ludwig Maximilians University. Available from http://www.deemy.de [accessed: 01.04.2022].
Bedini, S., Bagnoli, G., Sbrana, C., Leporini, C., Tola, E., Dunne, C., D’Andrea, F., O’Gara, F., Nuti, M.P., 1999. Pseudomonas isolated from within fruit bodies of Tuber borchii are capable of producing biological control or phytostimulatory compounds in pure culture. Symbiosis, 26: 223-236. Available from https://dalspace.library.dal.ca/bitstream/handle/10222/77636/VOLUME%2026-NUMBER%203-1999-PAGE%20223.pdf?sequence=1 [accessed: 25.06.2022].
Benucci, G.M.N., Bonito, G., Falini, L.B., Bencivenga, M., Donnini, D., 2012. Truffles, timber, food, and fuel: sustainable approaches for multi-cropping truffles and economically important plants. In: A. Zambonelli, G.M. Bonito, eds. Edible ectomycorrhizal mushrooms. Berlin, Heidelberg: Springer, pp. 265-280. DOI: http://dx.doi.org/10.1007/978-3-642-33823-6_15.
Bonet, J.A., Fischer, C., Colinas, C., 2006. Cultivation of black truffle to promote reforestation and land-use stability. Agronomy for Sustainable Development, 26 (1): 69-76. DOI: https://doi.org/10.1051/agro:2005059.
Büntgen, U., Bagi, I., Fekete, O., Molinier, V., Peter, M., Splivallo, R., Vahdatzadeh M., Richard, F., Murat, C., Tegel, W., Stobbe, U., Martínez-Peńa F., Sproll, L., Hülsmann, L., Nievergelt, D., Meier, B., Egli, S., 2017. New insight into the complex relationship between weight and maturity of Burgundy truffles (Tuber aestivum). PLOS ONE 12 (1): e0170375. DOI: https://doi.org/10.1371/journal.pone.0170375.
Čejka, T., Isaac, E.L., Oliach, D., Martínez-Peńa, F., Egli, S., Thomas, P., Trnka, M., Büntgen, U., 2022. Risk and reward of the global truffle sector under predicted climate change. Environmental Research Letters, 17 (2): 024001. DOI: https://doi.org/10.1088/1748-9326/ac47c4.
Čejka, T., Trnka, M., Krusic, P.J., Stöbbe, U., Oliach, D., Vaclaik, T., Tegel, W., Büntgen, U., 2020. Predicted climate change will increase the truffle cultivation potential in central Europe. Scientific Reports, 10: 21281. DOI: https://doi.org/10.1038/s41598-020-76177-0.
Chevalier, G., Frochot, H., 1997. La truffe de Bourgogne. Levallois-Perret: Editions Pétrarque, 279 pp.
Chevalier, G., Sourzat, P., 2012. Soils and Techniques for Cultivating Tuber melanosporum and Tuber aestivum in Europe. In: A. Zambonelli, G.M. Bonito, eds. Edible ectomycorrhizal mushrooms. Berlin, Heidelberg: Springer, pp: 163-189. DOI: https://doi.org/10.1007/978-3-642-33823-6_10.
De Miguel, A.M., Águeda, B., Sánchez, S., Parladé, J., 2014. Ectomycorrhizal fungus diversity and community structure with natural and cultivated truffle hosts: applying lessons learned to future truffle culture. Mycorrhiza, 24 (1): 5-18. DOI: https://doi.org/10.1007/s00572-013-0554-3.
Dzierżyńska, A., 2011. Agroleśnictwo w Europie – zacofanie czy postęp? Postępy Nauk Rolniczych, 63 (4): 129-141. Available from http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.oai-journals-pan-pl-93102/c/oai-journals-pan-pl-93102_full-text_3db6449b-82c0-49fa-9c30-156d3a78a7be.pdf [accessed: 30.06.2022].
Freiberg, J.A., Sulzbacher, M.A., Grebenc, T., Santana, N.A., Schardong, I.S., Marozzi, G., Fronza, D., Giachini, A.J., Donnini, D., Jacques, R.J.S., Antoniolli, Z.I., 2021. Mycorrhization of pecans with European truffles (Tuber spp., Tuberaceae) under southern subtropical conditions. Applied Soil Ecology, 168: 104108. DOI: https://doi.org/10.1016/j.apsoil.2021.104108.
Gärdenfors, U., 1994. Eken-Utnyttjad av Tusentals Organismer. In: U. Olsson, ed., Ekfrämjandet 50 ĺr. Ekfrämjandet och Skogsvĺrdsstyrelsen, Ronneby, Sweden, pp. 77-82.
García-Montero, L.G., Quintana, A., Valverde-Asenjo, I., Díaz, P., 2009. Calcareous amendments in truffle culture: A soil nutrition hypothesis. Soil Biology and Biochemistry, 41 (6): 1227-1232. DOI: https://doi.org/10.1016/j.soilbio.2009.03.003.
García-Montero, L.G., Valverde-Asenjo, I., Moreno, D., Díaz, P., Hernando, I., Menta, C., Tarasconi, K., 2012. Influence of edaphic factors on edible ectomycorrhizal mushrooms: new hypotheses on soil nutrition and C sinks associated to ectomycorrhizae and soil fauna using the Tuber brűlé model. In: A. Zambonelli, G.M. Bonito, eds. Edible ectomycorrhizal mushrooms, current knowledge and future prospects. Soil Biology 34. Berlin: Springer-Verlag, pp. 83-104. DOI: https://doi.org/10.1007/978-3-642-33823-6_6.
Gazo, J., Miko, M., Chevalier, G., 2005. First results of inventory research on economically important species of truffles (Tuber) in the Tribec Mountains. Acta Fytotechnica et Zootechnica, 8 (3): 66-71.
Giomaro, G., Sisti, D., Zambonelli, A., 2005. Cultivation of edible ectomycorrhizal fungi by in vitro mycorrhizal synthesis. In: S. Declerck, J.A. Fortin, D.G. Strullu, eds. In vitro culture of mycorrhizas. Soil biology series. Berlin: Springer, pp: 253-267. DOI: https://doi.org/10.1007/3-540-27331-X_14.
Granetti, B., De Angelis, A., Materozzi, G., 2005. Umbria, terra di tartufi. Terni: Regione Umbria, 304 pp.
Gryndler, M., Černá, L., Bukovská, P., Hršelová, H., Jansa, J., 2014. Tuber aestivum association with non-host roots. Mycorrhiza, 24: 603-610. DOI: https://doi.org/10.1007/s00572-014-0580-9.
Hall, I.R., Brown, G.T., Zambonelli, A., 2007. Taming the truffle: the history, lore, and science of the ultimate mushroom. Portland: Timber, 279 pp.
Hilszczańska, D., Sierota, Z., Palenzona, M., 2008. New Tuber species found in Poland. Mycorrhiza, 18: 223-226. DOI: https://doi.org/10.1007/s00572-008-0175-4.
Hilszczańska, D., 2015. Popularyzacja upraw truflowych w Polsce jako metody ochrony gatunkowej trufli letniej i zagospodarowania terenów nieleśnych (Popularization of truffle cultivation in Poland as a method protect Tuber aestivum and management non-forest areas). Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, 17 (3): 119-129. Available from https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-ba039010-2b9c-4d09-b55e-d64ef257fdca [accessed: 30.06.2022].
Hilszczańska, D., 2016. Polskie trufle-skarb odzyskany: o hodowli i kulinariach podziemnego przysmaku. Warszawa: Centrum Informacyjne Lasów Państwowych, 56 pp.
Hilszczańska, D., Rosa-Gruszecka, A., Gawryś, R., Horak, J., 2019a. The effect of soil properties and vegetation characteristic in determining the frequency of fruiting bodies of the Burgundy truffle in Southern Poland. Ecoscience, 26 (2): 113-122. DOI: https://doi.org/10.1080/11956860.2018.1530327.
Hilszczańska, D., Szmidla, H., Sikora, K., Rosa-Gruszecka, A., 2019b. Soil properties conducive to the formation of Tuber aestivum Vitt. fruiting bodies. Polish Journal of Environmental Studies, 28 (3): 1713-1718. DOI: https://doi.org/10.15244/pjoes/89588.
Iotti, M., Piattoni, F., Leonardi, P., Hall, I. R., Zambonelli, A., 2016. First evidence for truffle production from plants inoculated with mycelial pure cultures. Mycorrhiza, 26: 793-798. DOI: https://doi.org/10.1007/s00572-016-0703-6.
Ingleby, K., Mason, P.A., Last, F.T., Fleming, L.V.V., 1990. Identification of ectomycorrhizas. London: HMSO, 304 pp.
Karwa, A., Varma, A., Rai, M., 2011. Edible ectomycorrhizal fungi: cultivation, conservation and challenges. In: M. Rai, A. Varma, eds. Diversity and biotechnology of ectomycorrhizae. Soil Biology 25. Berlin: Springer, pp. 429-453. DOI: https://doi.org/10.1007/978-3-642-15196-5_19.
Kinoshita, A., Obase, K., Yamanaka, T., 2018. Ectomycorrhizae formed by three Japanese truffle species (Tuber japonicum, T. longispinosum, and T. himalayense) on indigenous oak and pine species. Mycorrhiza, 28: 679-690. DOI: https://doi.org/10.1007/s00572-018-0860-x.
Leski, T., Rudawska, M., Aučina, A., 2008. The ectomycorrhizal status of European larch (Larix decidua Mill.) seedlings from bare-root forest nurseries. Forest Ecology and Management, 256 (12): 2136-2144. DOI: https://doi.org/10.1016/j.foreco.2008.08.004.
Leuschner, C., 2020. Drought response of European beech (Fagus sylvatica L.) – A review. Perspectives in Plant Ecology, Evolution and Systematics, 47: 125576. DOI: https://doi.org/10.1016/j.ppees.2020.125576.
Lu, X., Malajczuk, N., Dell, B., 1998. Mycorrhiza formation and growth of Eucalyptus globulus seedlings inoculated with spores of various ectomycorrhizal fungi. Mycorrhiza, 8: 81-86. DOI: https://doi.org/10.1007/s005720050216.
Murat, C., 2015. Forty years of inoculating seedlings with truffle fungi: past and future perspectives. Mycorrhiza 25: 77-81. DOI: https://doi.org/10.1007/s00572-014-0593-4.
Mosquera-Losada, M.R., Moreno, G., Pardini, A., McAdam, J.H., Papanastasis, V., Burgess, P.J., Lamersdorf, M., Castro, M., Liagre, F., Rigueiro-Rodríguez, A., 2012. Past, present and future of agroforestry systems in Europe. In: P. Nair, D. Garrity, eds. Agroforestry-the future of global land use. Dordrecht: Springer, pp. 285-312. DOI: https://doi.org/10.1007/978-94-007-4676-3_16.
Olivera, A., Fischer, C.R., Bonet, J.A., de Aragón, J., Oliach, D., Colinas, C., 2011. Weed management and irrigation are key treatments in emerging black truffle (Tuber melanosporum) cultivation. New Forests, 42: 227-239. DOI: https://doi.org/10.1007/s11056-011-9249-9.
Pacioni, G., Leonardi, M., Di Carlo, P., Ranalli, D., Zinni, A., De Laurentiis, G., 2014. Instrumental monitoring of the birth and development of truffles in a Tuber melanosporum orchard. Mycorrhiza, 24: 65-72. DOI: https://doi.org/10.1007/s00572-014-0561-z.
Ponce, A.R., Águeda, B., Ágreda, T., Modrego, M.P., Aldea, J., Martínez-Peńa, F., 2010. Un modelo de potencialidad climática para la trufa negra (Tuber melanosporum) en Teruel (Espańa). [A climatic potentiality model for black truffle (Tuber melanosporum) in Teruel (Spain)]. Forest Systems, 219: 208-220. DOI: https://doi.org/10.5424/fs/2010192-01315.
Repac, I., 2011. Ectomycorrhizal inoculum and inoculation techniques. In: R. Rai, A. Varma, eds. Diversity and biotechnology of ectomycorrhizae. Soil Biology series. Berlin: Springer, pp. 43-63. DOI: https://doi.org/10.1007/978-3-642-15196-5_3.
Reyna-Domenech, S., García-Barreda, S., 2009. European black truffle: its potential role in agroforestry development in the marginal lands of Mediterranean calcareous mountains. In: A. Rigueiro-Rodróguez, J. McAdam, M.R. Mosquera-Losada, eds. Agroforestry in Europe. Dordrecht: Springer, pp. 295-317. DOI: https://doi.org/10.1007/978-1-4020-8272-6_14.
Rosa-Gruszecka, A., Hilszczańska, D., Gil W., Kosel, B., 2017. Historia i perspektywy użytkowania i badań trufli w Polsce. (History and perspectives of utilisation and research on truffles in Poland). Sylwan, 161 (4): 320-327. DOI: https://doi.org/10.26202/sylwan.2017013.
Samils, N., 2002. The socioeconomic impact of truffle cultivation in rural Spain and its potential to encourage pioneer cultivation in Sweden. PHD thesis, SLU Uppsala, Sweden.
Samils, N., Olivera, A., Danell, E., Alexander, S.J., Fischer, C., Colinas, C., 2008. The socioeconomic impact of truffle cultivation in rural Spain. Economic Botany, 62 (3): 331. DOI: https://doi.org/10.1007/s12231-008-9030-y.
Shamekh, S., Grebenc, T., Leisola, M., 2014. The cultivation of oak seedlings inoculated with Tuber aestivum Vittad. in the boreal region of Finland. Mycological Progress, 13: 373-380. DOI: https://doi.org/10.1007/s11557-013-0923-5.
Sourzat, P., Kulifaj, M., Montant, C., 1993. Résultats techniques sur la trufficulture ŕ partir d’expérimentations conduites dans le Lot entre 1985 et 1992. Station d’expérimentation sur la Truffe. GIS Truffe. Le Montat: Lycée Professionnel Agricole de Cahors, 404 pp.
Stöbbe, U., Egli, S., Tegel, W., Peter, M., Sproll, L., Büntgen, U., 2013a. Potential and limitations of Burgundy truffle cultivation. Applied Microbiology and Biotechnology, 97: 5215-5224. DOI: https://doi.org/10.1007/s00253-013--4956-0.
Stöbbe, U., Stöbbe, A., Sproll, L., Tegel, W., Peter, M., Büntgen, U., Egli, S., 2013b. New evidence for the symbiosis between Tuber aestivum and Picea abies. Mycorrhiza, 23: 669-673. DOI: https://doi.org/10.1007/s00572-013--0508-9.
Suz, L.M., Martín, M.P., Fischer, C.R., Bonet, J.A., Colinas, C., 2010. Can NPK fertilizers enhance seedling growth and mycorrhizal status of Tuber melanosporum-inoculated Quercus ilex seedlings? Mycorrhiza, 20: 349-360. DOI: https://doi.org/10.1007/s00572-009-0289-3.
Thomas, P.W., 2012. The role of pH in Tuber aestivum syn. uncinatum mycorrhiza development within commercial orchards. Acta Mycologica, 47: 161-167. DOI: https://doi.org/10.5586/am.2012.019.
Thomas, P., Büntgen, U., 2017. First harvest of Périgord black truffle in the UK as a result of climate change. Climate Research, 74 (1): 67-70. DOI: https://doi.org/10.3354/cr01494.
Thomas, P., Büntgen, U., 2019. A risk assessment of Europe’s black truffle sector under predicted climate change. Science of The Total Environment, 655: 27-34. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.252.
Thomas, P.W., Vazquez, L.B., 2022. A novel approach to combine food production with carbon sequestration, biodiversity and conservation goals. Science of The Total Environment, 806: 151301. DOI: https://doi.org/10.1016/j.scitotenv.2021.151301.
Urban, A., 2016. Truffles and small mammals. In: A. Zambonelli, M. Iotti, C. Murat, eds. True truffle (Tuber spp.) in the world. Cham: Springer, pp. 353-373. DOI: https://doi.org/10.1007/978-3-319-31436-5_21.
Wedén, C., Danell, E., Camacho, F.J., Backlund, A., 2004. The population of the hypogeous fungus Tuber aestivum syn. T. uncinatum on the island of Gotland. Mycorrhiza 14: 19-23. DOI: https://doi.org/10.1007/s00572-003-0271-4.
Wedén, C., Pettersson, L., Danell, E., 2009. Truffle cultivation in Sweden: Results from Quercus robur and Corylus avellana field trials on the island of Gotland. Scandinavian Journal of Forest Research, 24 (1): 37-53. DOI: https://doi.org/10.1080/02827580802562056.
Zambonelli, A., Salomoni, S., Pisi, A., 1993. Caratterizzazione anatomo-morfologica delle micorrize di Tuber spp. su Quercus pubescens Willd. Micologia Italiana, 3: 73-90.
Zambonelli, A., Iotti, M., Zinoni, F., Dallavalle, E., Hall, I.R., 2005. Effect of mulching on Tuber uncinatum ectomycorrhizas in an experimental truffičre. New Zealand Journal of Crop and Horticultural Science, 33: 65-73. DOI: https://doi.org/10.1080/01140671.2005.9514332.
Zambonelli, A., Iotti, M., Piattoni, F., 2008. Problems and perspectives in the production of Tuber infected plants. Proceedings of the sixth international conference on mushroom biology and mushroom products. 29th September- -3rd October 2008, Bonn: GAMU, pp. 263-271. Available from https://www.researchgate.net/profile/Federica--Piattoni-2/publication/357884912_Problems_and_Perspectives_in_the_Production_of_Tuber_Infected_Plants/links/61e583ed8d338833e37689cb/Problems-and-Perspectives-in-the-Production-of-Tuber-Infected-Plants.pdf [accessed: 21.06.2022].
Zambonelli, A., Iotti, M., Barbieri, E., Amicucci, A., Stocchi, V., Peintner, U., Hall, I.R., 2010. The microbial communities and fruiting of edible ectomycorrhizal mushrooms. Acta Botanica Yunnanica, 16: 81-85.