Forest−stand survival in different age classes
Przeżywalność drzewostanów w klasach wieku
Sylwan 166 (7):415-430, 2022
Available online: 2022-11-05
Open Access (CC-BY)
clear−cutting • dieback • forest management • mortality • shelterwood • silviculture methods • stand • temperate forests

As forests are affected by many different biotic, abiotic and anthropogenic factors, not all stands (or parts thereof) survive the period of development for which a forest management plan is elaborated. On the other hand, due to the historical background, a part of the stands that should be cut are spared, to go on to exceed the fixed cutting age. This situation prompts questions as to how many stands are being cut (or destroyed by bio− or abiotic factors) and under what influences, as well as in regard to the level of exploitation of mature and over−mature stands that takes place? Responding to such questions, the work forming the basis of the present study has sought to estimate the probability of survival of stands in ten−year age classes, as against the probability that shelterwood cutting will be commenced within them. The data used to do this were collected by the Forest Management and Geodesy Bureau in line with Forest Management Instructions (2003, 2012), in respect of 64 Polish forest districts located within 14 regional directorates of the State Forests, and with a view to forest management plans being developed and made available by the State Forests General Directorate. Specifically, data from forest management plans elaborated in 2009 and 2010 were used, as were in essence repeat data (from Plans elaborated for the same Districts 10 years later – in 2019 and 2020). The empirical survival of stands in ten−year age classes was estimated by overlapping the vector map of stands of Forest Districts with a 100×100 m grid of sample plots. The probability estimate was then achieved using logistic regression in line with silvicultural method and the presence or absence of shelterwood cutting, and clear−cutting), as well as in respect of the six main tree species in Polish forestry. In total, data were collected from 615,516 individual sample points, of which dominant species in stands were Pinus sylvestris in 65.8% of cases, as compared with figures of 4.6% for Picea abies, 5.7% for Alnus glutinosa, 5% for Fagus sylvatica, 11.4% for Quercus robur and Quercus petraea and 7.6% for Betula pendula. Survival probabilities were found to differ between Forest Management Units (FMUs) of different species, cutting age and silvicultural method. Thus, for pine stands with a projected cutting age of 110 years, the probability of that the first age class would transition into the second was only 96.4%, increasing slightly thereafter. Spruce stands associated with the clearcut method had a relatively high probability of early mortality at 30−50 years of age (of about 5%), with this decreased in pre−mature stands. Among beech stands, there was a clear decrease in the probability of survival in age classes 2 and 3 (11−20 and 21−30 years old respectively). In the stands associated with the clear−cutting silvicultural method, the probability of that taking place was found to be even in each age class in mature and over−mature stands. It was also shown that, in each case in which the cutting age had been exceeded after some time, the probability of survival was greater with age, with the probability of a cut not being below 25% in any age class.

Act, 1991. Ustawa o lasach. (Forest Act). Dz.U. 1991 nr 101 poz. 444.
Akkerman, R., 1987. Zur Situation der Baum und Waldschäden in Nordwestdeustchland. Teil I. Wardenburg: BSH, 293 pp.
Bachmann, P., Amman, S., Kunz, B., 2005. Moderne forstbetriebliche Planung. Schweizerische Zeitschrift fur Forstwesen, 5: 184-185. DOI:
Borecki, T., Stępień, E., 2017. Evolution of the role and current tasks of forest management planning. Sylwan, 161 (3): 179-188. DOI:
Bréda, N., Huc, R., Granier, A., Dreyer, E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes, and long-term consequences. Annals of Forest Science, 63 (6): 625-644. DOI:
Brodrick, P.G., Anderegg, L.D.L., Asner, G.P., 2019. Forest drought resistance at large geographic scales. Geophysical Research Letters, 46 (5): 2752-2760. DOI:
Bruchwald, A., Dmyterko, E., 2010. Metoda określania ryzyka uszkodzenia drzewostanu przez wiatr. (The method of determining risk of wind damage to tree stands). Leśne Prace Badawcze, 71 (2): 165-173. DOI:
Everham, E.M., Brokaw, N.V., 1996. Forest damage and recovery from the catastrophic wind. The Botanical Review, 62 (2): 113-185. DOI:
Flower, C.E., Gonzalez-Meler, M.A., 2015. Responses of temperate forest productivity to insect and pathogen disturbances. Annual Review of Plant Biology, 66: 547-569. DOI: https://10.1146/annurev-arplant-043014-115540.
Gadow, V.K., 2000. Evaluating risk in forest planning models. Silva Fennica, 34 (2): 181-191. DOI:
Głaz, J., 1997. Metodyka prognozy rozwoju zasobów drzewnych. (Methodology of forecasting the development of wood resources). Prace Instytutu Badawczego Leśnictwa, 831: 46-69.
Greszta, J., 1987. Wpływ przemysłowego zanieczyszczenia powietrza na lasy. Warszawa: Wydawnictwo SGGW-AR, 176 pp.
Gruber, A., Strobl, S., Veit, B., Oberhuber, W., 2010. Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiology, 30 (4): 490-501. DOI:
Hanewinkel, M., Cullmann, D.A., Schelhaas, M.J., Nabuurs, G.J., Zimmermann, N.E., 2013. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3 (3): 203-207. DOI:
Holécy, J., 2009. The paradigm of risk and measuring the vulnerability of forest by natural hazards. In: K. Střelcová, C. Mátyás, A. Kleidon, M. Lapin, F. Matejka, M. Blaženec, J. Škvarenina, J. Holécy, eds., Bioclimatology and Natural Hazards. Dordrecht: Springer, pp. 231-247. DOI:
Holécy, J., Hanewinkel, M., 2006. A forest management risk insurance model and its application to coniferous stands in southwest Germany. Forest Policy and Economics, 8 (2): 161-174. DOI:
Höllerl, S., 2009. Consideration of financial aspects in silvicultural decisions – a case study on pure spruce stands in the montane mixed forest zone. Forstarchiv, 80 (1): 4-14. DOI:
IUL, 2003. Instrukcja Urządzania Lasu. (Forest Management Instruction). Warszawa: Państwowe Gospodarstwo Leśne Lasy Państwowe.
IUL, 2012. Instrukcja Urządzania Lasu. (Forest Management Instruction). Warszawa: Państwowe Gospodarstwo Leśne Lasy Państwowe.
Jacob, M., Bade, C., Calvete, H., 2013. Significance of over-mature and decaying trees for carbon stocks in a Central European natural spruce forest. Ecosystems, 16 (2): 336-346. DOI:
Jarzyna, K., 2021. Climatic hazards for native tree species in Poland with special regards to silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.). Theorethical and Applied Climatology, 144 (1): 581-591. DOI:
Kašpar, J., Maruscaronk, R., Hlavatý, R., 2015. A forest planning approach with respect to the creation of overmature reserved areas in managed forests. Forests, 6 (2): 328-343. DOI:
Klimek, K., Jelonek, T., Tomczak, A., 2018. Wpływ procesów starzenia się drzew na wybrane właściwości fizyczne tkanki drzewnej sosny zwyczajnej (Pinus sylvestris L.). (The influence of tree aging processes on selected physical properties of Scots pine (Pinus sylvestris) wood tissue). Acta Scientiarum Polonorum. Silvarum Colendarum Ratio et Industria Lignaria, 17 (4): 353-360. DOI:
Klocek, A., Rutkowski, B., 1986. Optymalizacja regulacji użytkowania rębnego drzewostanów. Warszawa: PWRiL, 321 pp.
Klocek, A., Oesten, G., 1993. Optymalizacja wieku rębności w lesie normalnym oraz celowym. (Optimization of cutting age in normal and conceptual forest). Prace Instytutu Badawczego Leśnictwa, 747-751: 3-31.
Kłapeć, B., Miścicki, S., Stępień, E., 2009. Drzewostany przeszłorębne w Lasach Państwowych. (Overmatured stands in the State Forests National Forest Holding). Sylwan, 153 (9): 594-606. DOI:
Knoke, T., Hahn, A., Schneider, T., 2010. Linking inventory and forest optimisation: information and decision-making in forest management. European Journal of Forest Research, 129 (5): 771-775. DOI:
Kolström, T., Kellomäki, S., 1993. Tree survival in wildfires. Silva Fennica, 27 (4): 277-281.
Kouba, J., 1973. Cepi Markova i opredelenje normalnego lesa. Dokłady TSChA, 194.
Kouba, J., 1977. Markov chains and modelling the long-term development of the age structure and production of forests – proposal of a new theory of the normal forest. Scientia Agriculturae Bohemoslovaca, 9 (3): 179-193.
Kouba, J., 2002. Das Leben des Waldes und seine Lebensunsicherheit (Forest life and its temporal uncertainty). Forstwissenschaftliches Centralblatt, 121 (4): 211-228. DOI:
Liebhold, A.M., 2012. Forest pest management in a changing world. International Journal of Pest Management, 58 (3): 289-295. DOI:
Logofet, D.O., Lesnaya, E.V., 2000. The mathematics of Markov models: what Markov chains can really predict in forest successions. Ecological Modelling, 126 (2-3): 285-298. DOI:
Lucas, H., Anders, B., 1978. Mathematische Grundlagen zur Anwendung von Übergangswahrscheinlichkeieten bei der Strukturregelung im Walde. Tech. Univ. Dresden. Sektion Forstwirtschaft Tharandt und Sektion Mathematik Tharandt.
Lucas, H., Anders, B., 1978. Zur Problematik der Anwendung von Übergangswahrscheinlichkeieten auf Modellbetriebsklassen. Tech. Univ. Dresden. Sektion Forstwirtschaft Tharandt und Sektion Mathematik Tharandt.
Lusawa, R., 2009. Hans Carl von Carlowitz – the author of the concept ‘Sustainable Development’. Rocznik Naukowy Wydziału Zarządzania w Ciechanowie, (1-2): 5-16.
Macias Fauria, M., Johnson, E.A., 2008. Climate and wildfires in the North American boreal forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1501): 2315-2327. DOI:
MacDicken, K.G., Sola, P., Hall, J.E., Sabogal, C., Tadoum, M., de Wasseige, C., 2015. Global progress toward sustainable forest management. Forest Ecology and Management, 352 (7): 47-56. DOI:
Miller, H.G., Mork, P., 2013. From data to decisions: a value chain for big data. It Professional, 15 (1): 57-59. DOI:
Minsch, J., 1992. Gesamtheitliche Betrachtungen zu tatsächlichen und vermeintlichen Nutzungskonflikten im Wald. BUWAL, Schriftenreihe Umwelt. Holz, 175: 67-89.
Möhring, B., 1986. Dynamische Betriebsklassensimulation – ein Hilfsmittel für die Waldschadensbewertung und Entscheidungsfindung im Forstbetrieb. Berichte des Forschungszentrums Waldökosysteme/Waldsterben, 20: 268.
Möhring, B., Staupendahl, K., Leefken, G., 2010. Modellierung und Bewertung naturaler forstlicher Risiken mit Hilfe von Überlebensfunktionen. Forst und Holz, 65 (4): 26-30.
Orzechowski, M., Wójcik, R., 2014. Regionalne zróżnicowanie ryzyka wystąpienia uszkodzeń drzewostanów w Polsce. Regional differentiation of the risk of forests damages in Poland. Studia i Materiały Centrum Edukacji Przyrodniczo--Leśnej, 16, 39 (2A): 44-54.
Parzych, S., Mandziuk, A., Wysocka-Fijorek, E., 2018. Wpływ zasobności drzewostanów sosnowych na ustalanie ekonomicznego wieku dojrzałości rębnej. (Impact of Scots pine stand growing stock on determining the optimal economic rotation age). Sylwan, 162 (8): 671-678. DOI:
Poznański, R., 1973. Las jako układ i macierz prawdopodobieństwa przejść. (Forest as a system and matrix of transition probability). Sylwan, 117 (5): 29-38.
Poznański, R., 1982. Formy rozumowania logicznego a typy prognoz w gospodarstwie leśnym. (Forms of logical thinking and types of forecasts in forest management). Sylwan, 126 (5), 11-17.
Poznański, R., 1983. Metodologiczne podstawy prognozowania w urządzaniu lasu. (Methodological bases of forecasting in forest management). Sylwan, 127 (5): 1-12.
Poznański, R., 2000. Idea lasu celowego a idea lasu rzeczywistego. (The idea of a target forest and the idea of a real forest). Sylwan, 144 (2): 57-62.
Poznański, R., 2003. Wpływ czynników otoczenia na przeżywanie i ubywanie drzewostanów w klasach wieku. Kraków: Katedra Urządzania Lasu Akademii Rolniczej, 156 pp.
Poznański, R., 2005. Wieki rębności i wieloaspektowa ocena ich stosowania. (Rotation ages and multi-aspect evaluation of their application). Sylwan, 149 (3): 24-33. DOI:
Poznański, R., 2012. Analiza i ocena wyników gospodarowania w Lasach Państwowych w minionym dwudziestoleciu. (Analysis and evaluation of forest management in the State Forests National Forest Holding in the last two decades). Sylwan, 156 (7): 542-547. DOI:
Pretzsch, H., Rötzer, T., Matyssek, R., Grams, T.E.E., Häberle, K.H., Pritsch, K., Munch, J.C. 2014. Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees, 28 (5): 1305-1321. DOI:
Rutkowski, B., 1971. Problem regulacji w gospodarstwie leśnym. (Problem of regulation in forest management). Sylwan, 115 (3): 1-11.
Sekot, W., 2012. Zielstrukturen und Zielvorrate für die Ertragsregelung. Forstzeitung, 11: 4-6.
Sierota, Z., Grodzki, W., Szczepkowski, A., 2019. Abiotic and biotic disturbances affecting forest health in Poland over the past 30 years: impacts of climate and forest management. Forests, 10 (1): 75. DOI:
Siry, J.P., Cubbage, F.W., Ahmed, M.R., 2005. Sustainable forest management: global trends and opportunities. Forest Policy and Economics, 7 (4): 551-561. DOI:
Smykała, J., 1993. Wiek rębności (kolej rębu) jako instrument polityki leśnej. (Rotation age as an instrument of forest policy). Sylwan, 137 (5): 5-11.
Staupendahl, K., Möhring, B., 2011. Integrating natural risks into silvicultural decision models: a survival function approach. Forest Policy and Economics, 13 (6): 496-502. DOI:
Staupendahl, K., Zucchini, W., 2011. Schätzung von Überlebensfunktionen der Hauptbaumarten auf der Basis von Zeitreihendaten der Rheinland-Pfälzischen Waldzustandserhebung. Allgemeine Forst-und Jagdzeitung, 182 (7/8): 129-145.
Steinkamp, J., Hickler, T., 2015. Is drought induced forest dieback globally increasing? Journal of Ecology, 103 (1): 31-43. DOI:
Stępień, E., Kędziora, W., Orzechowski, M., Wójcik, R., Borecki, T., 2019. Regionalne zróżnicowanie potrzeb i pilności przebudowy drzewostanów. (Regional diversity of the need and the urgency of stands conversion). Sylwan, 163 (4): 267-278. DOI:
Szczygieł, R., Ubysz, B., Kwiatkowski, M., Piwnicki, J., 2009. Klasyfikacja zagrożenia pożarowego lasów Polski. (Forest fire hazard classification in Poland). Leśne Prace Badawcze, 70 (2): 131-141. DOI:
Szwagrzyk, J., 2000. Rozległe naturalne zaburzenia w ekosystemach leśnych: ich zasięg, charakter i znaczenie dla dynamiki lasu. Wiadomości Ekologiczne, 46 (1): 3-19.
TIBCO, 2017. TIBCO Software Inc., Statistica (data analysis software system), version 13.
Van Lierop, P., Lindquist, E., Sathyapala, S., Franceschini, G., 2015. Global forest area disturbance from fire, insect pests, diseases, and severe weather events. Forest Ecology and Management, 352: 78-88. DOI:
Wysocka-Fijorek, E., Zając, S. 2016. Metody optymalizacji wieku dojrzałości rębnej drzewostanów z punktu widzenia wiązania węgla. (Optimization methods of the rotation age from the point of view of carbon sequestration). Sylwan, 160 (9): 720-729. DOI:
Wysocka-Fijorek, E., Zajączkowski, S., 2020. Indukcyjna metodyka prognozy rozwoju zasobów drzewnych. (Inductive methodology of the forecast of wood resources development). Sylwan, 164 (4), 267-279. DOI:
Zabielski, B., 1976. Urządzanie lasu. Warszawa: PWRiL, 347 pp.