Article

Wybór elitarnych drzew matecznych sosny zwyczajnej i modrzewia europejskiego do założenia plantacji nasiennych 1,5 generacji
Selection of elite plus trees of Scots pine and European larch for the establishment of 1.5 generation seed orchards
ANDRZEJ LEWANDOWSKI, JAN KOWALCZYK, MONIKA LITKOWIEC, LECH URBANIAK, MAREK RZOŃCA
Sylwan 161 (11):917-926, 2017
DOI: https://doi.org/10.26202/sylwan.2017087
Available online: 2017-12-29
Open Access (CC-BY)
seed orchards • genetic gain • forest tree breeding

Abstract
Forest tree breeding is principally concerned with the improvement of growth, wood quality and vitality of tree species of economic interest. In Poland, breeding programs started in the second half of the twentieth century with the choice of plus trees to establish seed orchards. At present, seed orchards are a predominant source for the production of genetically improved seeds of conifers. In our country, Scots pine is the main forest tree, occupying almost 80% of the forest area. Annually, about 30,000 hectares of pines are artificially planted, with only a few percent of seeds coming from seed orchards. European larch is an important admixture tree species of economic significance in some areas, such as the Świętokrzyskie Mountains. Unlike Scots pine, as much as 60% of larch seeds used for artificial regeneration comes from seed orchards. There are 179 seed orchards in Poland, occupying area of 1140 ha, including 48 Scots pine and 30 European larch ones of 384 ha and 207 ha, respectively. All of them are only first generation and were established with vegetative propagules of plus trees selected in wild stands for their outstanding phenotype. Based on the results from the evaluation of plus trees in progeny trials, we selected 40 Scots pine and 40 European larch elite trees to establish 1.5−generation seed orchards. The selected trees were also characterized for their level of genetic variation with the use of nuclear microsatellite loci. We found that the examined trees have a high level of genetic variation. The mean number of alleles per locus and expected heterozygosity were 12.4 and 11.9, and 0.752 and 0.806, for Scots pine and European larch respectively. The calculated parameters are comparable to that observed in the populations of these species in Poland and other European countries. Established genetic profiles will be used in the future for controlling and monitoring the identity of elite trees in the process of creating archives of clones and seed plantations of next generation.

Literature
Adams W. T., Aitken S. N., Joyce D. G., Howe G. T., Vargas-Hernandez J. 2001. Evaluating efficacy of early testing for stem growth in coastal Douglas-fir. Silvae Genetica 50: 167-175.
Barzdajn W., Jeleniewski M., Kuss M. 2008. Próba wykorzystania rodowej plantacji nasiennej sosny zwyczajnej (Pinus sylvestris L.) do testowania drzew matecznych. Leś. Pr. Bad. 69 (1): 27-40.
Chagne D., Chaumeil P., Ramboer A., Collada C., Guevara A., Cervera M. T., Vendramin G. G., Garcia V., Frigerio J. M., Echt C., Richardson T., Plomion C. 2004. Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theorelical and Applied Genelics 109: 1204-1214.
Chałupka W., Matras J., Barzdajn W., Blonkowski S., Burczyk J., Fonder W., Grądzki T., Gryzło Z., Kacprzak P., Kowalczyk J., Kozioł C., Pytko T., Rzońca Z., Sabor J., Szeląg Z., Tarasiuk S. 2011. Program zachowania leśnych zasobów genowych i hodowli selekcyjnej drzew w Polsce na lata 2011-2035. CILP, Warszawa.
Chybicki I. J., Burczyk J. 2009. Simultaneous estimation of null alleles and inbreeding coefficients. Journal of Heredity 100: 106-113.
Danusevicius D., Lindgren D. 2002. Two-stage selection strategies in tree breeding considering gain, diversity, time and cost. Forest Genetics 9: 147-159.
Dumolin S., Demesure B., Petit R. J. 1995. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoretical and Applied Genetics 91: 1253-1256.
Elsik C. G., Minihan V. T., Hall S. E., Scarpa A. M., Williams C. G. 2000. Low-copy microsatellite markers for Pinus taeda L. Genome 43: 550-555. DOI: 10.1139/g00-002.
Funda T., Lstiburek M., Lachout P., Klápste J., El-Kassaby Y. A. 2009. Optimization of combined genetic gain and diversity for collection and deployment of seed orchard crops. Tree Genetics and Genomes 5: 583-593.
Giertych M. 1976. Progeny tests. W: Przybylski T., Giertych M., Białobok S. [red.]. Genetics of Scots pine (Pinus sylvestris L.). Zagreb. 72-75.
Giertych M. 2006. Pozytywne oddziaływanie człowieka na strukturę genetyczną drzew leśnych. W: Sabor J. [red.]. Elementy genetyki i hodowli selekcyjnej drzew leśnych. CILP, Warszawa. 429-437.
Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices. Version 2.9.3.
Haapanen M., Hynynen J., Ruotsalainen S., Siipilehto J., Kilpelainen M.-L. 2016. Realised and projected gains in growth, quality and simulated yield of genetically improved Scots pine in southern Finland. Eur. J. Forest Res. 135: 997-1009.
Henderson C. R. 1973. Sire evaluation and genetic trends. W: Proceedings of the Animal Breeding and Genetics. Symposium in Honour of J.L. Lush. 10-41.
Isoda K., Watanabe A. 2006. Isolation and characterization of microsatellite loci from Larix kaempferi. Molecular Ecology 6: 664-666.
Ivetić V., Devetaković J., Nonić M., Stanković D., Šijačić-Nikolić M. 2016. Genetic diversity and forest reproductive material – from seed source selection to planting. iForest Biogeosciences and Forestry 9: 801-812.
Jansson G., Li B., Hannrup B. 2003. Time trends in genetic parameters for height and optimal age for parental selection in Scots Pine. For. Sci. 49: 696-705.
Koski V. 2000. A note on genetic diversity in natural populations and cultivated stands of Scots pine Pinus sylvestris L. Investigacion Agraria, Sistemas y Recursos Forestales (Fuera de Serie 1): 89-95.
Kowalczyk J. 2007. Combining production of improved seeds with genetic testing in seedling seed orchards. W: Lindgren D. [red.]. Proceedings of a Seed Orchard Conference. Umeĺ, Sweden. 26-28.
Kowalczyk J. 2013. Międzypokoleniowa zmienność struktury genetycznej wybranych drzewostanów sosny zwyczajnej (Pinus sylvestris L.). Prace Instytutu Badawczego Leśnictwa. Rozprawy i Monografie 19: 136.
Lambeth C. C., Greenwood M. S. 1987. Accelerated breeding and testing of Loblolly pine in the southern USA. For. Tree Improv. 20: 27-44.
Lewandowski A., Burczyk J. 2000. Mating system and genetic diversity in natural populations of European larch (Larix decidua) and Stone pine (Pinus cembra) located at higher elevations. Silvae Genetica 49: 158-161.
Lindgren D., Prescher F. 2005. Optimal clone number for seed orchards with tested clones. Silvae Genetica 54: 80-92.
Magnussen S., Yanchuk A. D. 1993. Selection age and risk: Finding the compromise. Silvae Genetica 42: 25-40.
Muller-Starck G. 1995. Protection of genetic variability in forest trees. Forest Genetics 2: 121-124.
Munoz F., Sanchez L. 2015. breedR: Statistical methods for forest genetic resources analysts. R package version 0.11-3.
Nardin M., Musch B., Rousselle Y., Guerin V., Sanchez L., Rossi J-P., Gerber S., Marin S., Paques L. E., Rozenberg P. 2015. Genetic differentiation of European larch along an altitudinal gradient in the French Alps. Annals of Forest Science 72: 517-527.
Rozporządzenie Ministra Środowiska z dnia 23 kwietnia 2004 r. w sprawie szczegółowych wymagań, jakie powinien spełniać leśny materiał podstawowy. 2004. Dz. U. Nr 100, poz. 1026.
Sebastiani F., Pinzauti F., Kujala S. T., González-Martínez S. C., Vendramin G. G. 2012. Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. Conservation Genetics Resources 4: 231-234. DOI: 10.1007/ s12686-011-9513-5.
Soranzo N., Provan J., Powell W. 1998. Characterization of microsatellite loci in Pinus sylvestris L. Molecular Ecology 7: 1260-1261.
Wagner S., Gerber S., Petit R. J. 2012. Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Molecular Ecology Resources 4: 717-725.
Wakeley P. C. 1971. Relation of thirtieth-year to earlier dimensions of southern pines. For. Sci. 17 (2): 200-209.
White T. L., Adams W. T., Neale D. B. 2007. Forest genetics. CABI.
White T. T. L., Hodge G. G. R. 1989. Predicting breeding values with applications in foresttree improvement. Kluwer Academic Publishers, Dordrecht, Netherlands.
Wójkiewicz B., Litkowiec M., Wachowiak W. 2016. Contrasting patterns of genetic variation in core and peripheral populations of highly outcrossing and wind pollinated forest tree species. AoB PLANTS 8: plw054. DOI: 10.1093/ aobpla/plw054.
Wu H. X. 1998. Study of early selection in tree breeding. 1. Advantage of Early selection through increase of selection intensity and reduction of field test size. Silvae Genetica 47: 146-155.
Zarządzenie nr 29 Dyrektora Generalnego Lasów Państwowych z dnia 21 marca 2013 r. w sprawie ochrony leśnych zasobów genowych na potrzeby nasiennictwa i hodowli drzew leśnych. 2013. Znak: ZH-7132-7/2013.
Zhou Y., Bui T., Auckland L. D., Williams C. G. 2002. Undermethylated DNA as a source of microsatellites from a conifer genome. Genome 45: 91-99. DOI: 10.1139/g01-119.
Żukowska W. B., Wójkiewicz B., Litkowiec M., Wachowiak W. 2017. Cross-amplification and multiplexing of cpSSRs and nSSRs in two closely related pine species (Pinus sylvestris L. and P. mugo Turra). Dendrobiology 77: 59-64.