Sex structure and population growth rate of roe deer Capreolus capreolus and red deer Cervus elaphus in three landscapes estimated through cumulative direct observations
Struktura płciowa i przyrost populacji sarny europejskiej Capreolus capreolus i jelenia szlachetnego Cervus elaphus w trzech typach krajobrazu, oszacowane na podstawie wyników skumulowanych obserwacji bezpośrednich
PAWEŁ NASIADKA, MAREK WAJDZIK Sylwan 169 (1):29-44, 2025
DOI:
https://doi.org/10.26202/sylwan.2024063Available online: 2025-02-28
Open Access (CC-BY)
direct observations • monitoring • population structure • wildlife management
The aim of the study was to determine the sex structure and reproduction rate of roe deer Capreolus capreolus and red deer Cervus elaphus in six forest districts in north−western Poland: Choszczno, Dobrzany, Karwin, Międzychód, Barlinek and Kłodawa. The forest districts represent three different types of landscape: Field – an agricultural landscape in the north, consisting of a mosaic of large agricultural areas and small forest complexes; ConFor – a compact forest complex in the south, dominated by poor pine sites; and DecFor – consisting of dense, fertile forests in the central part of the study area. The study used a cumulative method of direct observation conducted in the field over a period of 20 days. The direct observations of the animals were car− ried out from July 23 to August 11 with the participation of employees of the State Forests, local hunters and volunteers. About 60 observers per day were present in the field area, 80 in the ConFor and 70 in the DecFor. The observations took place at different times of the day, with participants recording the individuals encountered and determining their sex and age. Only juveniles born in the current year (2−3 months old during the study) and adults were recorded, yearlings were excluded. A total of 8,817 animals were recorded during the observations, including 6,014 roe deer and 2,803 red deer. The highest number of individuals was observed in the Field landscape (5,734), where open terrain facilitated observation, while significantly fewer animals were recorded in ConFor (1,429) and DecFor (1,654). No significant differences in sex structure and reproductive rate were observed between the three environmental types. The sex ratio averaged 1 : 1 ; however, in some cases the number of females exceeded the number of males. The reproductive rate was about 0.6 young per female. The sex structure of the local popula− tions varied from area to area – in the Field landscape, for example, the ratio of females to males was 1.34 for roe deer and 1.02 for red deer. The reproduction rate for roe deer ranged from 0.35 young per female in DecFor to 0.51 in Field. For red deer, the reproduction rate ranged from 0.54 in Field to 0.60 in ConFor, showing significant statistical differences. One of the effects of aggregating observations was to stabilize the results for sex structure and reproductive rate as the number of animals observed increased. In the Field landscape, results stabilized at ±5% after only a few days of observation, whereas this took longer in ConFor and DecFor due to the more difficult observation conditions in the forest. The method of aggregating results from direct observations can be useful as a research tool and for population management but requires further theoretical and practical research.
Acevedo, P., Ruiz-Fons, F., Vicente, J., Reyes-García, A.R., Alzaga, V., Gortázar, C., 2008. Estimating red deer abundance in a wide range of management situations in Mediterranean habitats. Journal of Zoology, 276 (1): 37-47. DOI: https://doi.org/10.1111/j.1469-7998.2008.00464.x.
Alves, J., Alves da Silva, A., Soares, A.M.V.M., Fonseca, C., 2014. Spatial and temporal habitat use and selection by red deer: The use of direct and indirect methods. Mammalian Biology, 79 (5): 338-348. DOI: https://doi.org/10.1016/j.mambio.2014.05.007.
Anderson, C.W., Nielsen, C.K., Hester, C.M., Hubbard, R.D., Stroud, J.K., Schauber, E.M., 2013. Comparison of indirect and direct methods of distance sampling for estimating density of white-tailed deer. Wildlife Society Bulletin, 37 (1): 146-154. DOI: https://doi.org/10.1002/wsb.231.
Apollonio, M., Andersen, R., Putman, R., 2010. European ungulates and their management in the 21st century. Cambridge: Cambridge Univer-sity Press, 604 pp.
Bobek, B., Morow, K., Perzanowski, K., Kosobucka, M., 1992. Jeleń. Monografia przyrodniczo-łowiecka. Warszawa: Wydawnictwo Świat, 198 pp.
Buckland, S.T., Goudie, I.B.J., Borchers, D.L., 2000. Wildlife population assessment: Past developments and future directions. Biometrics, 56 (1): 1-12. DOI: https://doi.org/10.1111/j.0006-341X.2000.00001.x.
Burbaite·, L., Csányi, S., 2010. Red deer population and harvest changes in Europe. Acta Zoologica Lituanica, 20 (4): 179-188. DOI: https://doi.org/10.2478/v10043-010-0038-z.
Cameron, E.Z., 1999. Birth sex ratios relate to mare condition at conception in Kaimanawa horses. Behavioral Ecology, 10 (5): 472-475. DOI: https://doi.org/10.1093/beheco/10.5.472.
Chećko, E., 2011. Estimating forest ungulate populations: a review of methods. Forest Research Papers, 72 (3): 253-265. DOI: https://doi.org/10.2478/v10111-011-0025-6.
Clutton-Brock, T.H., 1991. The evolution of parental care. Princeton: Princeton University Press, 352 pp.
Clutton-Brock, T.H., Iason, G.R., 1986. Sex ratio variation in mammals. The Quarterly Review of Biology, 61 (3): 339-374. DOI: https://doi.org/10.1086/415033.
Clutton-Brock, T.H., Major, M., Guinness, F.E., 1985. Population regulation in male and female red deer. The Journal of Animal Ecology, 54 (3): 831. DOI: https://doi.org/10.2307/4381.
Davis, M.L., Stephens, P.A., Kjellander, P., 2016. Beyond climate envelope projections: Roe deer survival and environmental change. The Jour-nal of Wildlife Management, 80 (3): 452-464. DOI: https://doi.org/10.1002/jwmg.1029.
Delahay, R.J., de la Fuente, J., Smith, G.C., Sharun, K., Snary, E.L., Flores Girón, L., Nziza, J., Fooks, A.R., Brookes, S.M., Lean, F.Z.X., Breed, A.C., Gortazar, C., 2021. Assessing the risks of SARS-CoV-2 in wildlife. One Health Outlook, 3 (1): 7. DOI: https://doi.org/10.1186/s42522-021-00039-6.
Dubas, J., 1996. Szkody łowieckie w przyleśnych uprawach rolnych w północno-wschodniej Polsce. (Hunting damage in forest-adjoining agricul-tural crops in northeastern Poland). Sylwan, 10: 45-56.
Dzięciołowski, R., Goszczyński, J., Wasilewski, M., Babińska-Werka, J., 1995. Numbers of red deer in the Słowiński National Park, Poland. Acta Theriologica, 40 (1): 45-51.
Festa-Bianchet, M., Jorgenson, J.T., King, W.J., Smith, K.G., Wishart, W.D., 1996. The development of sexual dimorphism: Seasonal and lifetime mass changes of bighorn sheep. Canadian Journal of Zoology, 74: 330-342.
Focardi, S., Montanaro, P., Isotti, R., Ronchi, F., Scacco, M., Calmanti, R., 2005. Distance sampling effectively monitored a declining population of Italian roe deer Capreolus capreolus italicus. Oryx, 39 (4): 421. DOI: https://doi.org/10.1017/S0030605305001109.
Fontana, R., Calabrese, L., Lanzi, A., Armaroli, E., Reganella Pelliccioni, E., 2022. Spatial behavior of red deer (Cervus elaphus) in Northern Apennines: are we managing them correctly? Animal Biotelemetry, 10 (30): DOI: https://doi.org/10.1186/s40317-022-00300-3.
Gazzola, A., Bertelli, I., Avanzinelli, E., Tolosano, A., Bertotto, P., Apollonio, M., 2005. Predation by wolves (Canis lupus) on wild and domestic ungulates of the western Alps, Italy. Journal of Zoology, 266 (2): 205-213. DOI: https://doi.org/10.1017/S0952836905006801.
Gerhardt, P., Arnold, J. M., Hackländer, K., Hochbichler, E., 2013. Determinants of deer impact in European forests – A systematic literature analysis. Forest Ecology and Management, 310: 73-186. DOI: https://doi.org/10.1016/j.foreco.2013.08.030.
Gilbert, S.L., Hundertmark, K.J., Person, D.K., Lindberg, M.S., Boyce, M.S., 2017. Behavioral plasticity in a variable environment: snow depth and habitat interactions drive deer movement in winter. Journal of Mammalogy, 98 (1): 246-259. DOI: https://doi.org/10.1093/jmammal/gyw167.
Goldsmith, F.B., Sutherland, W.J., 1997. Ecological census techniques: A handbook. Cambridge: Cambridge University Press, 336 pp.
Hewison, A.J., Vincent, J.P., Joachim, J., Angibault, J.M., Cargnelutti, B., Cibien, C., 2001. The effects of woodland fragmentation and human activity on roe deer distribution in agricultural landscapes. Canadian Journal of Zoology, 79 (4): 679-689. DOI: https://doi.org/10.1139/z01-032.
Hewison, M., Gaillard, J.M., 1996. Birth-sex ratios and local resource competition in roe deer, Capreolus capreolus. Behavioral Ecology, 7 (4): 461-464. DOI: https://doi.org/10.1093/beheco/7.4.461.
Hewison, M., Gaillard, J.M., 1999. Successful sons or advantaged daughters? The Trivers-Willard model and sex-biased maternal investment in ungulates. Trends in Ecology and Evolution, 14 (6): 229-234. DOI: https://doi.org/10.1016/S0169-5347(99)01592-X.
Jeppesen, J.L., 1987. Seasonal variation in group size, and sex and age composition in a Danish red deer (Cervus elaphus) population under heavy hunting pressure. Danish Review of Game Biology, 13 (1): 1-19.
Kossak, S., 1995. Liczebność zwierzyny w Puszczy Białowieskiej i proponowane sposoby prowadzenia gospodarki łowieckiej. (Game abundance in the Białowieża Forest and proposed wildlife management strategies). Sylwan, 139 (8): 25-41.
Kruuk, L.E.B., Clutton-Brock, T.H., Albon, S.D., Pemberton, J.M., Guinness, F.E., 1999. Population density affects sex ratio variation in red deer. Nature, 399 (6735): 459-461. DOI: https://doi.org/10.1038/20917.
Laing, S.E., Buckland, S.T., Burn, R.W., Lambie, D., Amphlett, A., 2003. Dung and nest surveys: estimating decay rates. Journal of Applied Ecology, 40 (6): 1102-1111. DOI: https://doi.org/10.1111/j.1365-2664.2003.00861.x.
Loison, A., Festa-Bianchet, M., Gaillard, J.M., Jorgenson, J.T., Jullien, J.M., 1999. Age-specific survival in five populations of ungulates: Evidence of senescence. Ecology, 80 (8): 2539. DOI: https://doi.org/10.2307/177239.
Morellet, N., Van Moorter, B., Cargnelutti, B., Angibault, J.M., Lourtet, B., Merlet, J., Ladet, S., Hewison, A.J.M., 2011. Landscape composi-tion influences roe deer habitat selection at both home range and landscape scales. Landscape Ecology, 26 (7): 999-1010. DOI: https://doi.org/10.1007/s10980-011-9624-0.
Morse, J.M., Field, P.A., 1996. Principles of data collection. In: Nursing Research. Boston: Springer US, pp. 72-102.
Nasiadka, P., 1997. Problems of assessing population sizes of deer: a review of methods used in Poland. Journal of Wildlife Research, 2 (2): 186-190.
Nasiadka, P., Skubis, J., Wajdzik, M., 2015. Direct observations of wildlife as an element of the monitoring of large ungulates on the example of moose (Alces alces L.) in the Kampinoski National Park. Sylwan, 159 (7): 565-578. DOI: https://doi.org/10.26202/sylwan.2014265.
Pagon, N., Grignolio, S., Pipia, A., Bongi, P., Bertolucci, C., Apollonio, M., 2013. Seasonal variation of activity patterns in roe deer in a tempe-rate forested area. Chronobiology International, 30 (6): 772-785. DOI: https://doi.org/10.3109/07420528.2013.765887.
Panek, M., Budny, M., 2023. Sytuacja zwierząt łownych w Polsce – wyniki monitoringu. Czempiń: Polski Związek Łowiecki, 42 pp.
Post, E., Forchhammer, M., Stenseth, N., 1998. Population ecology and the North Atlantic Oscillation (NAO). Ecological Bulletins, 47: 117-125.
Skogland, T., 1986. Sex ratio variation in relation to maternal condition and parental investment in wild reindeer Rangifer t. tarandus. Oikos, 46 (3): 417. DOI: https://doi.org/10.2307/3565843.
Stache, A., Heller, E., Hothorn, T., Heurich, M., 2013. Activity patterns of European roe deer (Capreolus capreolus) are strongly influenced by individual behaviour. Folia Zoologica, 62 (1): 67-75. DOI: https://doi.org/10.25225/fozo.v62.i1.a10.2013.
Stains, B.W., Ratcliffe, P.R., 1987. Estimating the abundance of red deer (Cervus elaphus L.) and roe deer (Capreolus capreolus L.) and their current status in Great Britain. Symposium of Zoological Society London, 58: 131-152.
Stoate, C., Báldi, A., Beja, P., Boatman, N.D., Herzon, I., van Doorn, A., de Snoo, G.R., Rakosy, L., Ramwell, C., 2009. Ecological impacts of early 21st century agricultural change in Europe – A review. Journal of Environmental Management, 91 (1): 22-46. DOI: https://doi.org/10.1016/j.jenvman.2009.07.005.
Stopher, K.V., Bento, A.I., Clutton-Brock, T.H., Pemberton, J.M., Kruuk, L.E.B., 2014. Multiple pathways mediate the effects of climate change on maternal reproductive traits in a red deer population. Ecology, 95 (11): 3124-3138. DOI: https://doi.org/10.1890/13-0967.1.
Śmietana, W., 2005. Selectivity of wolf predation on red deer in the Bieszczady Mountains, Poland. Acta Theriologica, 50 (2): 277-288. DOI: https://doi.org/10.1007/BF03194490.
Thompson, S.K., Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., 1994. Distance sampling: Estimating abundance of biological populations. Biometrics, 50 (3): 891. DOI: https://doi.org/10.2307/2532812.
Tomek, A., 2002. Właściwości i struktura populacji jelenia (Cervus elaphus L.) w lasach krynickich (Karpaty). [Properties and structure of the red deer (Cervus elaphus L.) population in the Krynica Forests (Carpathian Mountains)]. Zeszyty Naukowe Akademii Rolniczej im. H. Kołłątaja w Krakowie, 279: 100 pp.
Trivers, R.L., Willard, D.E., 1973. Natural selection of parental ability to vary the sex ratio of offspring. Science, 179 (4068): 90-92. DOI: https://doi.org/10.1126/science.179.4068.90.
Uchwała, 2005. Uchwała nr 57 Naczelnej Rady Łowieckiej z dnia 22 lutego 2005 r. w sprawie przyjęcia zasad selekcji osobniczej i populacyjnej zwierząt łownych w Polsce oraz zasad postępowania przy ocenie prawidłowości odstrzału.
Uchwała, 2015. Uchwała nr 14/2015 z dnia 15 grudnia 2015 r. w sprawie przyjęcia zasad selekcji populacyjnej i osobniczej zwierząt łownych w Polsce oraz zasad postępowania przy ocenie zgodności odstrzału.
Ustawa, 1995. Ustawa z dnia z dnia 13 października 1995 r. Prawo łowieckie. Dz.U. 1995 Nr 147 poz. 713.
van Beeck Calkoen, S.T.S., Kuijper, D.P.J., Apollonio, M., Blondel, L., Dormann, C.F., Storch, I., Heurich, M., 2023. Numerical top-down effects on red deer (Cervus elaphus) are mainly shaped by humans rather than large carnivores across Europe. Journal of Applied Ecology, 60 (12): 2625-2635. DOI: https://doi.org/10.1111/1365-2664.14526.
Vicente, J., Höfle, U., Fernández-De-Mera, I.G., Gortazar, C., 2007. The importance of parasite life history and host density in predicting the impact of infections in red deer. Oecologia, 152 (4): 655-664. DOI: https://doi.org/10.1007/s00442-007-0690-6.
Vincent, J.P., Gaillard, J.M., Bideau, E., 1991. Kilometric index as biological indicator for monitoring forest roe deer populations. Acta Theriolo-gica, 36: 315-328. DOI: https://doi.org/10.4098/AT.arch.91-33.
Wegge, P., 1975. Reproduction and early calf mortality in Norwegian red deer. The Journal of Wildlife Management, 39 (1): 92. DOI: https://doi.org/10.2307/3800470.