Article

Accumulation and stabilization of soil organic matter in forest soils in the vicinity of a roadway
Akumulacja i stabilizacja glebowej materii organicznej w glebach leśnych w sąsiedztwie drogi ekspresowej
PIOTR GRUBA, DAWID KUPKA, MATEUSZ KANIA, MARCIN SZUSZKIEWICZ, MARCIN PIETRZYKOWSKI
Sylwan 169 (1):15-28, 2025
DOI: https://doi.org/10.26202/sylwan.2024062
Available online: 2025-02-28
Open Access (CC-BY)
ion exchange • Silver fir • soil organic carbon sequestration • soil organic matter • temperate forest soils • traffic pollution

Abstract
The content of carbon and its stability in forest soils in the vicinity of roadways has not yet been thoroughly investigated. The aim of this work was to investigate the content of soil organic carbon in forest soils, in relation to soil cation exchange properties in the vicinity of a roadway. We assumed that input of sodium, originating from the winter road de−icing, reduces the concentration of other cations and therefore, modifies relations between ions in soil cation exchange capacity. Changes to these relations may potentially influence the stability and accumulation of soil carbon. We selected four study sites adjacent to the S7 roadway in Poland. Data confirmed that soil in the close vicinity to the roadway had an enhanced concentration of sodium, magnesium and calcium. We also found increased level of carbon accumulation at 2−12 m distance from the forest edge. Increased carbon content, particularly of the light fraction, originated from roots and aboveground parts of the forest understory layer, observed as much better developed at the forest edge than further into the forest. Stable fraction and dissolved organic carbon were mostly related to the soil aluminum and iron contents, which were also increased closer to the roadway.

Literature
Asensio, E., Ferreira, V.J., Gil, G., García-Armingol, T., López-Sabirón, A.M., Ferreira, G., 2017. Accumulation of de-icing salt and leaching in Spanish soils surrounding roadways. International Journal of Environmental Research and Public Health, 14 (12): 1498. DOI: https://doi.org/10.3390/ijerph14121498.
Bäckström, M., Bäckman, L., Folkeson, L., Karlsson, S., Lind, B., 2004. Mobilisation of heavy metals by deicing salts in a roadside environment. Water Research, 38 (3): 720-732. DOI: https://doi.org/10.1016/j.watres.2003.11.006.
Berggren, D., Mulder, J., 1995. The role of organic matter in controlling aluminum solubility in acidic mineral soil horizons. Geochimica et Cosmochimica Acta, 59 (20): 4167-4180. DOI: https://doi.org/10.1016/0016-7037(95)94443-J.
Berggren, D., Mulder, J., Westerhof, R., 1998. Prolonged leaching of mineral forest soils with dilute HCl solutions: The solubility of Al and soil organic matter. European Journal of Soil Science, 49 (2): 305-316. DOI: https://doi.org/10.1046/j.1365-2389.1998.00150.x.
Buurman, P., van Lagen, B., Velthorst, E.J., 1996. Manual for soil and water analysis. Leiden: Backhuys Publishers, pp. 7-8.
Chabbi, A., Kögel-Knabner, I., Rumpel, C., 2009. Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biology and Biochemistry, 41 (2): 256-261. DOI: https://doi.org/10.1016/j.soilbio.2008.10.033.
DeLuca, T.H., Boisvenue, C., 2012. Boreal forest soil carbon: Distribution, function and modelling. Forestry, 85 (2): 161-184. DOI: https://doi.org/10.1093/forestry/cps003.
De Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E., Carnicelli, S., 2015. Benchmark values for forest soil carbon stocks in Euro-pe: Results from a large scale forest soil survey. Geoderma, 251-252: 33-46. DOI: https://doi.org/10.1016/j.geoderma.2015.03.008.
Gałuszka, A., Migaszewski, Z.M., Podlaski, R., Dołęgowska, S., Michalik, A., 2011. The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environmental Monitoring and Assessment, 176 (1-4): 451-464. DOI: https://doi.org/10.1007/s10661-010-1596-z.
GDDKiA, 2020a. Gotowi do zimowego utrzymania dróg w sezonie 2020/2021. Warszawa: Generalna Dyrekcja Dróg Krajowych i Autostrad. Avai-lable from: https://www.archiwum.gddkia.gov.pl/pl/a/39725/Gotowi-do-zimowego-utrzymania-drog-w-sezonie-20202021 [accessed: 01.11.2024].
GDDKiA, 2020b. Podsumujemy zimę 2019/2020 i wyjaśnimy, o co chodzi w zimowym utrzymaniu dróg. Warszawa: Generalna Dyrekcja Dróg Krajowych i Autostrad. Available from: https://www.archiwum.gddkia.gov.pl/pl/a/37500/Podsumujemy-zime-20192020-i-wyjasnimy-o-co-chodzi-w-utrzymaniu-drog [accessed: 01.11.2024].
Gruba, P., Mulder, J., 2008. Relationship between aluminum in soils and soil water in mineral horizons of a range of acid forest soils. Soil Scien-ce Society of America Journal, 72 (4): 1150-1157. DOI: https://doi.org/10.2136/sssaj2007.0041.
Gruba, P., Mulder, J., 2015. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Science of the Total Environment, 511: 655-662. DOI: https://doi.org/10.1016/j.scitotenv.2015.01.013.
Gruba, P., Socha, J., 2019. Exploring the effects of dominant forest tree species, soil texture, altitude, and pHH2O on soil carbon stocks using generalized additive models. Forest Ecology and Management, 447: 105-114. DOI: https://doi.org/10.1016/j.foreco.2019.05.061.
Gruba, P., Socha, J., Błońska, E., Lasota, J., 2015. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland. Science of the Total Environment, 521-522: 90-100. DOI: https://doi.org/10.1016/j.scitotenv.2015.03.100.
Grüneberg, E., Ziche, D., Wellbrock, N., 2014. Organic carbon stocks and sequestration rates of forest soils in Germany. Global Change Biology, 20 (8): 2644-2662. DOI: https://doi.org/10.1111/gcb.12558.
Hassink, J., 1997. A model of the physical protection of organic matter in soils the capacity of soils to preserve organic C and N by their associa-tion with clay and silt particles. Plant and Soil, 191: 77-87.
Herold, N., Schöning, I., Michalzik, B., Trumbore, S., Schrumpf, M., 2014. Controls on soil carbon storage and turnover in German landscapes. Biogeochemistry, 119 (1-3): 435-451. DOI: https://doi.org/10.1007/s10533-014-9978-x.
Hobbie, S.E., Ogdahl, M., Chorover, J., Chadwick, O.A., Oleksyn, J., Zytkowiak, R., Reich, P.B., 2007. Tree species effects on soil organic mat-ter dynamics: The role of soil cation composition. Ecosystems, 10 (6): 999-1018. DOI: https://doi.org/10.1007/s10021-007-9073-4.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th Edition. Vienna: International Union of Soil Sciences (IUSS), 123 pp.
Kaiser, K., Guggenberger, G., Zech, W., 1996. Sorption of DOM and DOM fractions to forest soils. Geoderma, 74 (3-4): 281-303. DOI: https://doi.org/10.1016/S0016-7061(96)00071-7.
Kleber, M., Mikutta, R., Torn, M.S., Jahn, R., 2005. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. European Journal of Soil Science, 56 (6): 717-725. DOI: https://doi.org/10.1111/j.1365-2389.2005.00706.x.
Krajewski, R., 1955. Szczegółowa mapa geologiczna Polski w skali 1:50 000. Warszawa: Wydawnictwo Geologiczne.
Kupka, D., Gruba, P., 2022. Effect of pH on the sorption of dissolved organic carbon derived from six tree species in forest soils. Ecological Indicators, 140: 108975. DOI: https://doi.org/10.1016/j.ecolind.2022.108975.
Kupka, D., Kania, M., Pietrzykowski, M., Łukasik, A., Gruba, P., 2021. Multiple factors influence the accumulation of heavy metals (Cu, Pb, Ni, Zn) in forest soils in the vicinity of roadways. Water, Air, and Soil Pollution, 232 (5): 194. DOI: https://doi.org/10.1007/s11270-021-05147-7.
Laxen, D.P.H., Harrison, R.M., 1977. The highway as a source of water pollution: An appraisal with the heavy metal lead. Water Research, 11 (1): 1-11. DOI: https://doi.org/10.1016/0043-1354(77)90175-0.
Mikutta, R., Kleber, M., Jahn, R., 2005. Poorly crystalline minerals protect organic carbon in clay subfractions from acid subsoil horizons. Geo-derma, 128 (1-2): 106-115. DOI: https://doi.org/10.1016/j.geoderma.2004.12.018.
Mikutta, R., Mikutta, C., Kalbitz, K., Scheel, T., Kaiser, K., Jahn, R., 2007. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochimica et Cosmochimica Acta, 71 (10): 2569-2590. DOI: https://doi.org/10.1016/j.gca.2007.03.002.
Motto, H.L., Daines, R.H., Chilko, D.M., Motto, C.K., 1970. Lead in soils and plants: Its relationship to traffic volume and proximity to highways discussions follow. Environmental Science and Technology, 4 (3): 231-237. DOI: https://doi.org/10.1021/es60038a009.
Mueller, K.E., Eissenstat, D.M., Hobbie, S.E., Oleksyn, J., Jagodzinski, A.M., Reich, P.B., Chadwick, O.A., Chorover, J., 2012. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 111 (1-3): 601-614. DOI: https://doi.org/10.1007/s10533-011-9695-7.
Mueller, K.E., Hobbie, S.E., Chorover, J., Reich, P.B., Eisenhauer, N., Castellano, M.J., Chadwick, O.A., Dobies, T., Hale, C.M., Jagodzinski, A.M., Kałucka, I., Kieliszewska-Rokicka, B., Modrzyński, J., Rożen, A., Skorupski, M., Sobczyk, Ł., Stasińska, M., Trocha, L.K., Weiner, J., Wierzbicka, A., Oleksyn, J., 2015. Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry, 123 (3): 313-327. DOI: https://doi.org/10.1007/s10533-015-0083-6.
Mulder, J., De Wit, H.A., Boonen, H.W.J., Bakken, L.R., 2001. Increased levels of aluminum in forest soils: Effects on the stores of soil organic carbon. Water, Air, and Soil Pollution, 130 (1-4): 989-994. DOI: https://doi.org/10.1023/A:1013987607826.
Mulder, J., Van Breemen, N., Eijck, H.C., 1989. Depletion of soil aluminium by acid deposition and implications for acid neutralization. Nature, 337 (6204): 247-249. DOI: https://doi.org/doi:10.1038/337247a0.
Pająk, M., Krzaklewski, W., Duda, K., Gruba, P., 2015. Spatial and temporal variation in soil salinity as a result of chemical de-icing of road in Krakow, Poland. Fresenius Environmental Bulletin, 24 (10A): 3363-3370.
R Core Team, 2022. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Ross, D.S., Matschonat, G., Skyllberg, U., 2008. Cation exchange in forest soils: The need for a new perspective. European Journal of Soil Science, 59 (6): 1141-1159. DOI: https://doi.org/10.1111/j.1365-2389.2008.01069.x.
Rumpel, C., Eusterhues, K., Kögel-Knabner, I., 2004. Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils. Soil Biology and Biochemistry, 36 (1): 177-190. DOI: https://doi.org/10.1016/j.soilbio.2003.09.005.
Saidy, A.R., Smernik, R.J., Baldock, J.A., Kaiser, K., Sanderman, J., Macdonald, L.M., 2012. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma, 173-174: 104-110. DOI: https://doi.org/10.1016/j.geoderma.2011.12.030.
Schulp, C.J.E., Nabuurs, G.J., Verburg, P.H., de Waal R.W., 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256 (3): 482-490. DOI: https://doi.org/10.1016/j.foreco.2008.05.007.
Skyllberg, U., Raulund-Rasmussen, K., Borggaard, O.K., 2001. pH buffering in acidic soils developed under Picea abies and Quercus robur – Effects of soil organic matter, adsorbed cations and soil solution ionic strength. Biogeochemistry, 56 (1): 51-74. DOI: https://doi.org/10.1023/A:1011988613449.
Sohi, S.P., Mahieu, N., Arah, J.R.M., Powlson, D.S., Madari, B., Gaunt, J.L., 2001. A procedure for isolating soil organic matter fractions suita-ble for modeling. Soil Science Society of America Journal, 65 (4): 1121-1128. DOI: https://doi.org/10.2136/sssaj2001.6541121x.
Spielvogel, S., Prietzel, J., Auerswald, K., Kögel-Knabner, I., 2009. Site-specific spatial patterns of soil organic carbon stocks in different land-scape units of a high-elevation forest including a site with forest dieback. Geoderma, 152 (3-4): 218-230. DOI: https://doi.org/10.1016/j.geoderma.2009.03.009.
Šamonil, P., Valtera, M., Bek, S., Šebková, B., Vrška, T., Houška, J., 2011. Soil variability through spatial scales in a permanently disturbed natural spruce-fir-beech forest. European Journal of Forest Research, 130 (6): 1075-1091. DOI: https://doi.org/10.1007/s10342-011-0496-2.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., 2007. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 39 (9): 2183-2207. DOI: https://doi.org/10.1016/j.soilbio.2007.03.007.
Warren, R.S., Birch, P., 1987. Heavy metal levels in atmospheric particulates, roadside dust and soil along a major urban highway. The Science of the Total Environment, 59: 253-256. https://doi.org/10.1016/0048-9697(87)90446-3.
Wei, Y.L., Yang, Y.W., Lee, J.F., 2005. Lead speciation in 0.1N HCl-extracted residue of analog of Pb-contaminated soil. Journal of Electron Spec-troscopy and Related Phenomena, 144-147: 299-301. DOI: https://doi.org/10.1016/j.elspec.2005.01.218.
Zehetner, F., Rosenfellner, U., Mentler, A., Gerzabek, M.H., 2009. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water, Air, and Soil Pollution, 198 (1-4): 125-132. DOI: https://doi.org/10.1007/s11270-008-9831-8.