Article

Genetic variation in subpopulations of the European bark beetle Ips typographus L. from three mountains of the Inner Western Carpathians
Zmienność genetyczna europejskich subpopulacji kornika drukarza Ips typographus L. z terenu trzech pasm górskich Wewnętrznych Karpat Zachodnich
VERONIKA ROŠTEKOVÁ, DANIEL MIHÁLIK, KATARÍNA ONDREIČKOVÁ, JÁN KRAIC
Sylwan 169 (1):1-14, 2025
DOI: https://doi.org/10.26202/sylwan.2024051
Available online: 2025-02-28
Open Access (CC-BY)
Genetic diversity • microsatellite • migration • subpopulation differentiation • spruce bark beetle

Abstract
Disasters in spruce forests caused by climatic conditions (e.g. windstorms, increased temperatures, drought) or inappropriate forest management favour the outbreak of the European spruce bark beetle Ips typographus, which is the main pest affecting Norway spruce forests. The physical abilities of the pest itself enable it to disperse even across geographical barriers, establish new subpop− ulations, hybridise with local subpopulations, and increase its genetic diversity and viability. Genetic analysis, using six microsatellite markers, was carried out on 16 subpopulations of the bark beetle collected from an area of approximately 1100 km² within three mountains. The microsatel− lite markers used yielded parameters such as number of alleles, number of effective alleles, observed heterozygosity, and polymorphic information content for the evaluation of genetic variation in bark beetle subpopulations. Despite the considerable genetic variation observed among the subpopulations of bark beetles, no genetic differentiation was detected. The results indicate that neither the distance of approximately 55 km between the most distant sampling sites, nor the elevations of about 1000 m between the ridges and valleys between these sites, limit beetle movement and bark beetle gene flow.

Literature
Aguirre-Liguori, J.A., Luna-Sánchez, J.A., Gasca-Pineda, J., Eguiarte, L.E., 2020. Evaluation of the minimum sampling design for population genomic and microsatellite studies: An analysis based on wild maize. Frontiers in Genetics, 11: 870. DOI: https://doi.org/10.3389/fgene.2020.00870.
Arthofer, W., Heussler, C., Krapf, P., Schlick-Steiner, B.C., Steiner, F.M., 2018. Identifying the minimum number of microsatellite loci needed to assess population genetic structure: A case study in fly culturing. Fly, 12 (1): 13-22. DOI: https://doi.org/10.1080/19336934.2017.1396400.
Blackwell, E., Wimmer, V., Baier, P., Schopf, A., 2013. Induction and spread of a spruce bark beetle outbreak in the western area Dürrenstein, Austria. In: C. Bauch, ed. 5th Symposium for research in protected areas. Mittersill: Hohe Tauern National Park, pp. 65-70.
Botstein, D., White, R.L., Skolnick, M., Davis, R.W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32 (3): 314-331.
Bradburd, G.S., Ralph, P.L., Coop, G.M., 2014. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67 (1): 3258-3273. DOI: https://doi.org/10.1111/evo.12193.
Du, H., Fang, J., Shi, X., Yu, C., Deng, M., Zhang, S., Liu, F., Zhang, Z., Han, F., Kong, X., 2022. Insight into the divergence of Chinese Ips bark beetles during evolutionary adaptation. Biology, 11 (3): 384. DOI: https://doi.org/10.3390/biology11030384.
Du, H., Fang, J., Shi, X., Zhang, S., Liu, F, Yu, C., Zhang, Z., Kong, X., 2021. Comparative analysis of eight mitogenomes of bark beetles and their phylogenetic implications. Insects, 12 (10): 949. DOI: https://doi.org/10.3390/insects12100949.
Ellerstrand, S.J., Choudhury, S., Svensson, K., Anderson, M.N., Kirkeby, C., Powell, D., Schlyter, F., Jönsson, A.M., Brydegaard, M., Hansson, B., Runemark, A., 2022. Weak population genetic structure in Eurasian spruce bark beetle over large regional scales in Sweden. Ecology and Evolution, 12 (7): e9078. DOI: https://doi.org/10.1002/ece3.9078.
Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14 (8): 2611-2620. DOI: https://doi.org/10.1111/j.1365-294x.2005.
Forsse, E., Solbreck, C., 1985. Migration in the bark beetle Ips typographus L.: duration, timing, and height of flight. Zeitschrift für Angewandte Entomologie, 100 (1-5): 47-57. DOI: https://doi.org/10.1111/j.1439-0418.1985.tb02756.x.
Gugerli, F., Gall, R., Meier, F., Wermelinger, B., 2008. Pronounced fluctuation of spruce bark beetle (Scolytinae: Ips typographus) populations do not invoke genetic differentiation. Forest Ecology and Management, 256 (3): 405-409. DOI: https://doi.org/10.1016/j.foreco.2008.04.038.
Hale, M.L., Burg, T.M., Steeves, T.E., 2012. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE, 7 (9): e45170. DOI: https://doi.org/10.1371/journal.pone.0045170.
Hammer, Ř., Harper, D.A, Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 9.
Jakoby, O., Lischke, H., Wermelinger, B., 2019. Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus). Global Change Biology, 25 (12): 4048-4063. DOI: https://doi.org/10.1111/gcb.14766.
Jones, K.L., Shegelski, V.A., Marculis, N.G., Wijerathna, A.N., Evenden, M.L., 2019. Factors influencing dispersal by flight in bark beetles (Co-leoptera: Curculionidae: Scolytinae): from genes to landscapes. Canadian Journal of Forest Research, 49 (9): 1024-1041. DOI: https://doi.org/10.1139/cjfr-2018-0304.
Jönsson, A.M., Appelberg, G., Harding, S., Bärring, L., 2009. Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Global Change Biology, 15 (2): 486-499. DOI: https://doi.org/10.1111/j.1365-2486.2008.01742.x.
Kalinowski, S.T., Taper, M.L., Marshall, T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16 (5): 1099-1106. DOI: https://doi.org/10.1111/j.1365-294X.2007.03089.x.
Krascsenitsová, E., Kozánek, M., Ferenčík, J., Roller, L., Stauffer, C., Bertheau, C., 2013. Impact of the Carpathians on the genetic structure of the spruce bark beetle Ips typographus. Journal of Pest Science, 86: 669-676. DOI: https://doi.org/10.1007/s10340-013-0508-8.
Kunca, A., Zúbrik, M., Leontovyč, R., Vakula, J., Konôpka, B., Gubka, A., Galko, J., Longauerová, V., Nikolov. C., Fino, S., Varínsky, J., Kaštier, P., 2012. Major forest damaging agents in Slovakia. Forstschutz Aktuell, 56: 7-9.
Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209-220.
Mezei, P., Jakuš, R., Pennersdorfer, J., Havašová, M., Škvarenina, J., Ferenčík, J., Slivinský, J., Bičárová, M., Bilčík, D., Blaženec, M., Netherer, S., 2017. Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus – An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agricultural and Forest Meteorology, 242: 85-95. DOI: https://doi.org/10.1016/j.agrformet.2017.04.004.
Miyamoto, N., Fernández-Manjarrés, J.F., Morand-Prieur, M.E., Bertolino, P., Frascaria-Lacoste, N., 2008. What sampling is needed for relia-ble estimations of genetic diversity in Fraxinus excelsior L. (Oleaceae)? Annals of Forest Science, 65: 403. DOI: https://doi.org/10.1051/forest:2008014.
Montano, V., Bertheau, C., Doležal, P., Krumböck, S., Okrouhlík, J., Stauffer, C., Moodley, Y., 2016. How differential management strategies affect Ips typographus L. dispersal. Forest Ecology and Management, 360: 195-204. DOI: https://doi.org/10.1016/j.foreco.2015.10.037.
Müller, M., Niesar, M., Berens, I., Gailing, O., 2022. Genotyping by sequencing reveals lack of local genetic structure between two German Ips typographus L. populations. Forestry Research, 2: 1. DOI: https://doi.org/10.48130/FR-2022-0001.
Némethy, M., Mihálik, D., Steifetten, Ř., Rošteková, V., Mrkvová, M., Janiga, M., Kraic, J., 2018. Genetic differentiation between local popula-tions of Ips typographus in the high Tatra Mountains range. Scandinaviam Journal of Forest Research, 33 (3): 215-221. DOI: https://doi.org/10.1080/02827581.2017.1368697.
Nilsen, A.C., 1984. Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Annales Entomologici Fennici, 50: 37-42.
Peakall, R., Smouse, P.E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28 (19): 2537-2539. DOI: https://doi.org/10.1093/bioinformatics/bts460.
Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics, 155 (2): 945-959. DOI: https://doi.org/10.1093/genetics/155.2.945.
Romashkin, I., Neuvonen, S., Tikkanen, O.P., 2020. Northward shift in temperature sum isoclines may favour Ips typographus outbreaks in European Russia. Agricultural and Forest Entomology, 22 (3): 238-249. DOI: https://doi.org/10.1111/afe.12377.
Sallé, A., Arthofer, W., Lieutier, F., Stauffer, C., Kerdelhué, C., 2007. Phylogeography of a host-specific insect: genetic structure of Ips typogra-phus in Europe does not reflect past fragmentation of its host. Biological Journal of the Linnean Society, 90 (2): 239-246. DOI: https://doi.org/10.1111/j.1095-8312.2007.00720.x.
Sallé, A., Baylac, M., Lieutier, F., 2005. Size and shape changes of Ips typographus L. (Coleoptera: Scolytidae) in relation to population level. Agricultural and Forest Entomology, 7 (4): 297-306. DOI: https://doi.org/10.1111/j.1461-9555.2005.00274.x.
Sallé, A., Kerdelhué, C., Breton, M., Lieutier, F., 2003. Characterization of microsatellite loci in the spruce bark beetle Ips typographus (Co-leoptera: Scolytidae). Molecular Ecology Notes, 3 (3): 336-337. DOI: https://doi.org/10.1046/j.1471-8286.2003.00443.x.
Singh, V.V., Naseer, A., Mogilicherla, K., Trubin, A., Zabihi, K., Roy, A., Jakuš, R., Erbilgin, N., 2024. Understanding bark beetle outbreaks: exploring the impact of changing temperature regimes, droughts, forest structure, and prospects for future forest pest management. Reviews in Environmental Science and Bio/Technology, 23: 257-290. DOI: https://doi.org/10.1007/s11157-024-09692-5.
Stauffer, C., Lakatos, F., Blecha, R., 1995. Did Ips typographus (Coleoptera, Scolytidae) re-colonize Europe parallel to Picea abies after the last ice age? Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie, 10: 31-34.
Stauffer, C., Lakatos, F., Hewitt, G.M., 1997. The phylogenetic relationships of seven European Ips (Scolytidae, Ipinae) species. Insect Molecular Biology, 6 (3): 233-240. DOI: https://doi.org/10.1046/j.1365-2583.1997.00177.x.
Stauffer, C., Lakatos, F., Hewitt, G.M., 1999. Phylogeography and postglacial colonization routes of Ips typographus L. (Coleoptera, Scolytidae). Molecular Ecology, 8 (5): 763-773. DOI: https://doi.org/10.1046/j.1365-294X.1999.00626.x.
Stauffer, C., Leitinger, R., Sinsek, Z., Schreiber, J.D., Führer, E., 1992. Allozyme variation among nine Austrian Ips typographus L. (Col., Scolyti-dae) populations. Journal of Applied Entomology, 114 (1): 17-25. DOI: https://doi.org/10.1111/j.1439-0418.1992.tb01091.x.
Stoeckle, B.C., Kuehn, R., 2011. Identification of 18 polymorphic microsatellite loci in the spruce bark beetle Ips typographus (Coleoptera: Scolytidae) using high-throughput sequence data. European Journal of Entomology, 108 (1): 169-171. DOI: https://doi.org/10.14411/eje.2011.021.
Tollefsrud, M.M., Kissling, R., Gugerli, F., Johnsen, Ř., Skrřppa, T., Cheddadi, R., Van der Knaap, W.O., Latałowa, M., Terhürne-Berson, R., Litt, T., Geburek, T., Brochmann, C., Sperisen, C., 2008. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Molecular Ecology, 17 (18): 4134-4150. DOI: https://doi.org/10.1111/j.1365-294x.2008.03893.x.
Vanická, H., Holuša, J., Resnerová, K., Ferenčík, J., Potterf, M., Véle, A., Grodzki, W., 2020. Interventions have limited effects on the population dynamics of Ips typographus and its natural enemies in the Western Carpathians (Central Europe). Forest Ecology and Management, 470-471: 118209. DOI: https://doi.org/10.1016/j.foreco.2020.118209.