Chamaecytisus ruthenicus as an indicator of soil conditions and ectomycorrhizal fungal associations in sandy soils
Chamaecytisus ruthenicus jako wskaźnik właściwości glebowych i społeczności grzybów ektomykoryzowych gleb piaszczystych
Sylwan 168 (10):749-763, 2024
DOI:
https://doi.org/10.26202/sylwan.2024046Available online: 2024-11-17
Open Access (CC-BY)
Colias myrmidone • exchangeable cations • mycorrhiza • nitrogen • soil properties
The aim of this research is to determine the state of the habitat, especially the soil conditions and the ectomycorrhizal fungal communities that influence the occurrence of the Chamaecytisus ruthenicus plant. It is the main food plant for caterpillars of the two highly endangered butterfly species, Colias myrmidone and Poliomomatus eroides. The research was conducted in northeastern Poland in the Knyszyńska Forest which marks the western limit of the species’ distribution in Europe. The analysis included soil samples from areas with confirmed presence of Ch. ruthenicus [A] as well as control samples from areas where the species was absent [B]. Compared to [A], soils for [B] were characterised by a 2−fold higher concentration of exchangeable Al3+ and Hex, a 2.3−fold higher nitrogen content, and a 2.7−fold higher value of organic carbon. A strong correlation was found between pH and exchangeable acidity, hydrolytic acidity and exchangeable Al3+ on [B] plots. No significant correlations were found between the above variables in [A] plots. The analysed soils were characterised by a low sorption capacity. The sum of exchangeable cations did not exceed the value of 1.7 with Ca2+ ions predominating. In [B] plots, ectomycorrhizae of ubiquitous taxa such as Tomentella sp., Thelephora terrestris and Wilcoxina mikolae were more numerous. In [A] plots, species−rich mycorrhizae were found including Hebeloma sp. and Laccaria sp. which are typical of young pine trees. Non−metric multidimensional scaling (NMDS) analysis showed a different intensity of physicochemical properties between plots, especially in the 10−20 cm layer. Our research has shown that relatively similar habitat conditions, especially climate and soil type, can be very different at the local spatial scale that they become the main factor limiting plant development. The research emphasises the importance of local soil conditions in assessing the state of the habitat. We propose that Ch. ruthenicus may serve as a useful indicator of soil acidity and the presence of mycorrhizal fungal communities. This enables the indirect monitoring of another endangered species’ conservation.
Agerer, R., 1991. Characterization of ectomycorrhizae. Methods in Microbiology, 23: 25-73. DOI: https://doi.org/10.1016/S0580-9517(08)70172-7.
Alvarez, E., Monterroso, C., Fernandez, Marcos, M.L., 2002. Aluminium fractionation in Galician (NW Spain) forest soils as related to vegetation and parent material. Forest Ecology and Management, 166 (1-3): 193-206. DOI: https://doi.org/10.1016/S0378-1127(01)00658-2.
Andersson, G.K.S., Boke-Olén, N., Roger, F., Ekroos, J., Smith, H.G., Clough, Y., 2022. Landscape-scale diversity of plants, bumblebees and butterflies in mixed farm-forest landscapes of Northern Europe: Clear-cuts do not compensate for the negative effects of plantation forest cover. Biological Conservation, 274: 109728. DOI: https://doi.org/10.1016/j.biocon.2022.109728.
Arraiano-Castilho, R., Bidartondo, M.I., Niskanen, T., Clarkson, J.J., Brunner, I., Zimmermann, S., Seen-Irlet, B., Frey, B., Peintner, U., Mark, T., Sus, L.M., 2021. Habitat specialisation controls ectomycorrhizal fungi above the treeline in the European Alps. New Phytologist, 229: 2901-2916. DOI: https://doi.org/10.1111/nph.17033.
Ayangbenro, A.S., Babalola, O.O., 2021. Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Current Plant Biology, 25: 100173. DOI: https://doi.org/10.1016/j.cpb.2020.100173.
Bai, S., Qiu W., Zhang, H., Wang, Y., Berninger, F., 2020. Soil respiration following Chinese fir plantation clear-cut: Comparison of two forest regeneration approaches. Science of The Total Environment, 709: 135980. DOI: https://doi.org/10.1016/j.scitotenv.2019.135980.
Baldrian, P., 2017. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiology Reviews, 41 (2): 109-130. DOI: https://doi.org/10.1093/femsre/fuw040.
Balmer, O., Erhardt, A., 2001. Consequences of succession on extensively grazed grasslands for central European butterfly communities: rethinking conservation practices. Conservation Biology, 14: 746-757. DOI: https://doi.org/10.1046/j.1523-1739.2000.98612.x.
Błędzki, A.L., 2007. Metoda porównania bogactwa gatunkowego i różnorodności gatunkowej. Część I, II. Bioskop, 01/07: 18-22; 02/07: 20-23.
Boczoń, A., Hilszczańska, D., Wrzosek, M., Szczepkowski, A., Sierota, Z., 2021. Drought in the forest breaks plant-fungi interactions. European Journal of Forest Research, 140: 1301-1321. DOI: https://doi.org/10.1007/s10342-021-01409-5.
Câmara, E.R.G., Barros dos Santos, J.C., Coelho, de Araújo Filho J., Bittar, Schulze, S.M.B., Corręa, M.M., Ferreira, T.O., Santos de Sousa, J.E., Severino de Souza Júnior, V., 2021. Parent rock-pedogenesis relationship: How the weathering of metamorphic rocks influences the genesis of Planosols and Luvisols under a semiarid climate in NE Brazil. Geoderma, 385: 114878. DOI: https://doi.org/10.1016/j.geoderma.2020.114878.
Catoni, M., D’Amico, M.E., Zanini, E., Bonifacio, E., 2016. Effect of pedogenic processes and formation factors on organic matter stabilization in alpine forest soils. Geoderma, 263: 151-160. DOI: https://doi.org/10.1016/j.geoderma.2015.09.005 http://dx.doi.org/10.1016/j.geoderma.2015.09.005.
Chen, J., Saunders, S.C., Crow, T.R., Naiman, R.J., Brosofske, K.D., Mroz, G.D., Brookshire, B.L., Franklin, J.F., 1999. Microclimate in forest ecosystem and landscape ecology: Variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience, 49 (4): 288-297. DOI: https://doi.org/10.2307/1313612.
Cristofolini, G., 1991. Taxonomic revision of Cytisus Desf. sect. Tubocytisus DC. Webbia, 45 (2): 187-219. DOI: https://doi.org/10.1080/00837792.1991.10670496.
Cristofolini, G., Troěa, A., 2006. A reassessment of the sections of the genus Cytisus Desf. (Cytiseae, Leguminosae). Taxon, 55 (3): 733-746. DOI: https://doi.org/10.2307/25065647.
Dahlgren, R.A., Driscoll, C.T., 1994. The effects of whole-tree clear-cutting on soil processes at the Hubbard Brook Experimental Forest, New Hampshire, USA. Plant and Soil, 158: 239-262.
De Prins, J., De Prins, W., 2024. Global taxonomic database of Gracillariidae (Lepidoptera). In: O. Bánki, Y. Roskov, M. Döring, G. Ower, D.R. Hernández Robles, C.A. Plata Corredor, T. Stjernegaard Jeppesen, A. Örn, L. Vandepitte, T. Pape, D. Hobern, S. Garnett, H. Little, R. E. DeWalt, K. Ma, J. Miller, T. Orrell, R. Aalbu, J. Abbott, et al. Catalogue of life (Version 2024-09-25). Amsterdam: Catalogue of Life. DOI: https://doi.org/10.48580/dg9ld-397.
Drábek, O., Borůvka, L., Pavlů, L., Nikodem, A., Pírková, I., Vacek, I., 2007. Grass cover on forest clear-cut areas ameliorates some soil chemical properties. Journal of Inorganic Biochemistry, 101 (1): 1224-1233. DOI: https://doi.org/10.1016/j.jinorgbio.2007.06.011.
Dultz, S., 2002. Effects of parent material and weathering on feldspar content in different particle size fractions from forest soils in NW Germany. Geoderma, 106: 63-81. DOI: https://doi.org/10.1016/S0016-7061(01)00116-1.
Eimil-Fraga, C., Álvarez-Rodríguez, E., Rodríguez-Soalleiro, R., Fernández-Sanjurjo, M.J., 2015. Influence of parent material on the aluminium fractions in acidic soils under Pinus pinaster in Galicia (NW Spain). Geoderma, 255-256: 50-57. DOI: https://doi.org/10.1016/j.geoderma.2015.04.026.
Falkengren-Grerup, U., Tyler, G., 1993. Experimental evidence for the relative sensitivity of deciduous forest plants to high soil acidity. Forest Ecology and Management, 60 (3-4): 311-326. DOI: https://doi.org/10.1016/0378-1127(93)90086-3.
Fujii, K., Funakawa, S., Kosaki, T., 2022. Effects of forest management on soil acidification in cedar plantation. Geoderma, 424 (1): 115967. DOI: https://doi.org/10.1016/j.geoderma.2022.115967.
Gruba, P., 2004. Toksyczność glinu (Al) w glebach leśnych. (Aluminium toxicity in forest soils). Sylwan, 148 (1): 50-56. DOI: https://doi.org/10.26202/sylwan.2003907.
Guo, R., Chen, Y., Xiang, M., Yang, S., Wang, F., Cao, W., Yue, H., Peng, S., 2024. Soil nutrients drive changes in the structure and functions of soil bacterial communities in a restored forest soil chronosequence. Applied Soil Ecology, 195: 105247. DOI: https://doi.org/10.1016/j.apsoil.2023.105247.
Guo, W., Ding, J., Wang, Q., Yin, M., Zhu, X., Liu, Q., Zhang, Z., Yin, H., 2021a. Soil fertility controls ectomycorrhizal mycelial traits in alpine forests receiving nitrogen deposition. Soil Biology and Biochemistry, 161: 108386. DOI: https://doi.org/10.1016/j.soilbio.2021.108386.
Guo, W., Zhang, Z., Liu, Q., Xiao, J., Yin, H., 2021b. Seasonal variations in plant nitrogen acquisition in an ectomycorrhizal alpine forest on the eastern Tibetan plateau, China. Plant and Soil, 459 (1-2): 79-91. DOI: https://doi.org/10.1007/s11104-020-04644-8.
Hédl, R., Petřík, P., Boublík, K., 2011. Long-term patterns in soil acidification due to pollution in forests of the Eastern Sudetes Mountains. Environmental Pollution, 159 (10): 2586-2593. DOI: https://doi.org/10.1016/j.envpol.2011.06.014.
Heiden, N., Cera, A., Palacio, S., 2022. Do soil features condition seed germination of gypsophiles and gypsovags? An analysis of the effect of natural soils along an alkalinity gradient. Journal of Arid Environments, 196: 104638. DOI: http://doi.org/10.1016/j.jaridenv.2021.104638.
Hilszczańska, D., 2004. Metody identyfikacji ektomykoryz. (Methods of ectomycorrhiza identification). Leśne Prace Badawcze, 4: 161-168.
Ingleby, K., Mason, P.A., Last, F.T., Fleming, L.V., 1990. Identification of ectomycorrhizas. Research publication no. 5. London: HMSO, 116 pp. Available from: https://nora.nerc.ac.uk/id/eprint/7646.
IUSS Working Group WRB, 2022. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. Vienna: International Union of Soil Sciences (IUSS), 236 pp.
Jansa, J., Finlay, R., Wallander, H., Smith, F.A., Smith, S.E., 2010. Role of mycorrhizal symbioses in phosphorus cycling. In: E. Bünemann, A. Oberson, E. Frossard, eds. Phosphorus in action. Soil Biology, 26. Berlin, Heidelberg: Springer, pp. 137-168. DOI: https://doi.org/10.1007/978-3-642-15271-9_6.
Jiang, J., Wang, Y.P., Yu, M., Cao, N., Yan, J., 2018. Soil organic matter is important for acid buffering and reducing aluminium leaching from acidic forest soils. Chemical Geology, 501: 86-94. DOI: https://doi.org/10.1016/j.chemgeo.2018.10.009.
Jin, X., Liu, Y., Hu, W., Wang, G., Kong, Z., Wu, L., Ge, G., 2019. Soil bacterial and fungal communities and the associated nutrient cycling responses to forest conversion after selective logging in a subtropical forest of China. Forest Ecology and Management, 444: 308-317. DOI: https://doi.org/10.1016/J.FORECO.2019.04.032.
Jonason, D., Ibbe, M., Milberg, P., Tunér, A., Westerberg, L., Bergman, K.O., 2014. Vegetation in clear-cuts depends on previous land use: A century-old grassland legacy. Ecology and Evolution, 4 (22): 4287-4295. DOI: https://doi.org/10.1002/ece3.1288.
Klimczuk, P., 2005. The larval host plant of Polyommatus eroides (Frivaldszky, 1835) (Lycaenidae) from Poland with comments on the life history. Nota Lepidopterologica, 28 (2): 103-111.
Klimczuk, P., 2011. Butterflies (Lepidoptera: Hesperioidea, Papilionoidea) of the Knyszyn Forest (Puszcza Knyszynska) and adjacent woodland areas of Bialystok in the years 1995-2010. Opole Scientific Society Nature Journal, 44: 197-217.
Kondracki, J., 2012. Geografia regionalna Polski. Warszawa: Wydawnictwo Naukowe PWN, 444 pp.
Kunito, T., Isomura, I., Sumi, H., Ho-Dong, P., Toda, H., Otsuka, S., Nagaoka, N., Saeki, K., Senoo, K., 2016. Aluminium and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biology and Biochemistry, 97: 22-30. DOI: https://doi.org/10.1016/j.soilbio.2016.02.019.
Loos, J., Gallersdörfer, J., Hartel, T., Dolek, M., Sutcliffe, L., 2021. Limited effectiveness of EU policies to conserve an endangered species in high nature value farmland in Romania. Ecology and Society, 26 (3): 3. https://doi.org/10.5751/ES-12489-260303.
Makomaska-Juchiewicz, M., Cierlik, G., Bonk, M., Król, W., Zięcik, A., 2019. Gatunki zwierząt. In: A. Cieśla, M. Mionskowski, B. Kornatowska, I. Müller, M. Zajączkowska, eds. Monitoring siedlisk przyrodniczych oraz gatunków roślin i zwierząt w latach 2017-2018. Biuletyn Monitoringu Przyrody 19 (1). Warszawa: Biblioteka Monitoringu Środowiska GIOŚ, pp. 1-187.
Markl, G., Hinneberg, H., Tarmann, G., 2022. Drastic decline of extensive grassland species in Central Europe since 1950: Forester moths of the genus Jordanita (Lepidoptera, Zygaenidae) as a type example. Ecology and Evolution, 12 (9): e9291. DOI: https://doi.org/10.1002/ece3.9291.
Merino, A., Omil, B., Pińeiro, V., Barros, N., Souza-Alonso, P., Campo, J., 2023. Soil C dynamics after deforestation and subsequent conversion of arable cropland to grassland in humid temperate areas. Science of the Total Environment, 901: 165793. DOI: https://doi.org/10.1016/j.scitotenv.2023.165793.
Middleton, B.A., 2013. Rediscovering traditional vegetation management in preserves: Trading experiences between cultures and continents. Biological Conservation, 158: 271-279. DOI: https://doi.org/10.1016/j.biocon.2012.10.003.
Näsholm, T., Kielland, K., Ganeteg, U., 2009. Uptake of organic nitrogen by plants. New Phytologist, 182 (1): 31-48. DOI: https://doi.org/10.1111/j.1469-8137.2008.02751.x.
Navarro-Perea, M., Pueyo, Y., Moret, D., Alados, C.L., 2022. Direct and indirect plant-soil interactions in a semi-arid Mediterranean shrubland (NE Spain). Journal of Arid Environments, 205: 104804. DOI: https://doi.org/10.1016/j.jaridenv.2022.104804.
Öckinger, E., Eriksson, A.K., Smith, H.G., 2006. Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biological Conservation, 133 (3): 291-300. DOI: https://doi.org/10.1016/j.biocon.2006.06.009.
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro, Cunha, E., Smith, T., Stier, A., Ter Braak, C., Weedon, J., 2022. Vegan: Community ecology package. R_package v. 2.6-4. Available from: https://CRAN.R-project.org/package=vegan.
Petrowicz, M., 1977. Rozmieszczenie szczodrzeńców na Lubelszczyźnie. Rocznik Dendrologiczny, 30: 55-65.
Petrowicz, M., 1978. Szczodrzeniec ruski – Chamaecytisus ruthenicus (Fisch. Ex Woł.). Annales Universitatis Mariae Curie--Skłodowska, 33 (15): 165-202.
Petrowicz, M., 1982. Rozmnażanie i uprawa krajowych gatunków szczodrzeńców. Annales UMCS, Sectio C Biologia, 37 (26): 313-328.
Pridacha, V.B., Sazonova, T.A., Novichonok, E.V., Semin, D.E., Tkachenko, Y.N., Pekkoev, A.N., Timofeeva, V.V., Bakhmet, O.N., Olchev, A.V., 2021. Clear-cutting impacts nutrient, carbon and water exchange parameters in woody plants in an east Fennoscandian pine forest. Plant and Soil, 466: 317-336. DOI: https://doi.org/10.1007/s11104-021-05058-w.
Prokhorov, A.V., Vasilyeva, Ju.S., 2017. Description of the larva of Agrilus antiquus croaticus (Coleoptera, Buprestidae). Vestnik Zoologii, 51 (1): 3-8. DOI: https://doi.org/10.1515/vzoo-2017-0001.
Qu, L., Makoto, K., Choi, D.S., Quoreshi, A.M., Koike, T., 2009. The role of ectomycorrhiza in boreal forest ecosystem. Permafrost Ecosystems, 209: 413-425. DOI: https://doi.org/10.1007/978-1-4020-9693-8_21.
R Core Team, 2023. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available from: https://www.R-project.org/.
Rada, P., Šafářová, L., Svobodová, P., Horák, J., 2023. Serious population extinctions of a formerly common xerothermic insect: The sad story of the conspicuous burnet moth Zygaena carniolica in the Czech Republic. Journal of Insect Conservation, 27 (4): 669-677. DOI: https://doi.org/10.1007/s10841-023-00489-5.
Rähn, E., Tedersoo, L., Adamson, K., Drenkhan, T., Sibul, I., Lutter, R., Anslan, S., Pritsch, K., Drenkhan, R., 2023. Rapid shift of soil fungal community compositions after clear-cutting in hemiboreal coniferous forests. Forest Ecology and Management, 544: 121211. DOI: https://doi.org/10.1016/j.foreco.2023.121211.
Roem, W.J., Berendse, F., 2000. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biological Conservation, 92 (2): 151-161. DOI: https://doi.org/10.1016/S0006-3207(99)00049-X.
Roth, E.M., Karhu, K., Koivula, M., Helmisaari, H.S., Tuittila, E.S., 2023. How do harvesting methods applied in continuous-cover forestry and rotation forest management impact soil carbon storage and degradability in boreal Scots pine forests? Forest Ecology and Management, 544: 121144. DOI: https://doi.org/10.1016/j.foreco.2023.121144.
Rozporządzenie, 2016. Rozporządzenie Ministra Środowiska z dnia 16 grudnia 2016 r. w sprawie ochrony gatunkowej zwierząt. Dz.U. 2016 poz. 2183 Available from: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160002183.
Scherbatskoy, T., Klein, R.M., Badger, G.J., 1987. Germination responses of forest tree seed to acidity and metal ions. Environmental and Experimental Botany, 27 (2): 157-164. DOI: https://doi.org/10.1016/0098-8472(87)90066-9.
Sielezniew, M., Deoniziak, K., Dziekańska, I., Nowicki, P., 2019. Dispersal in a metapopulation of the critically endangered Danube Clouded Yellow butterfly Colias myrmidone: implications for conservation. Journal of Insect Conservation, 23 (2): 291-300 DOI: https://doi.org/10.1007/s10841-019-00126-0.
Slesak, R.A., Harrington, T.B., D’Amato, A.W., Carter, D.R., 2021. Legacy effects of non-native Cytisus scoparius in glacial outwash soils: Potential impacts to forest soil productivity in western Washington. Forest Ecology and Management, 481: 118733. DOI: https://doi.org/10.1016/j.foreco.2020.118733.
Smith, S.E., Read, D., 2008. Mycorrhizal symbiosis. Third edition. New York: Academic Press, 787 pp.
Spohn, M., Stendahl, J., 2024. Soil carbon and nitrogen contents in forest soils are related to soil texture in interaction with pH and metal cations. Geoderma, 441: 116746. DOI: https://doi.org/10.1016/j.geoderma.2023.116746.
Staszel, K., Błońska, E., Lasota, J., 2023. Fine root morphology and soil properties under the influence of different tree stands along an altitudinal climosequence in the Carpathian mountains. Forest Ecosystems, 9: 100066. DOI: https://doi.org/10.1016/j.fecs.2022.100066.
Sutinen, R., Gustavsson, N., Hänninen, P., Middleton, M., Räisänen, M.L., 2019. Impact of mechanical site preparation on soil properties at clear-cut Norway spruce sites on mafic rocks of the Lapland Greenstone Belt. Soil and Tillage Research, 186: 52-63. DOI: https://doi.org/10.1016/j.still.2018.10.013.
Suz, L.M., Barsoum, N., Benham, S., Dietrich, H.P., Fetzer, K. D., Fischer, R., Fischer, R., García, P., Gehrman, J., Kristöfel, F., Manninger, M., Neagu, S., Nicolas, M., Oldenburger, J., Raspe, S., Sánchez, G., Schröck, H.W., Schubert, A., Verheyen, K., Verstraeten, A., Bidartondo, M.I., 2014. Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Molecular Ecology, 23 (22): 5628-5644. DOI: https://doi.org/10.1111/mec.12947.
Svenning, J.C., 2002. A review of natural vegetation openness in north-western Europe. Biological Conservation, 104 (2): 133-148. DOI: https://doi.org/10.1016/S0006-3207(01)00162-8.
Sverdrup, H., Warfvinge, P., 1993. Effects of soil acidity on trees and plants as expressed by the (Ca+Mg+K)/Al ratio. Reports in Ecology and Environmental Engineering. Lund: Lund Institute of Technology, 177 pp.
Taylor, M.K., Lankau, R.A., Wurzburger, N., 2016. Mycorrhizal associations of trees have different indirect effects on organic matter decomposition. Journal of Ecology, 104 (6): 1576-1584. DOI: https://doi.org/10.1111/1365-2745.12629.
Toková, L., Hološ, S., Šurda, P., Kollár, J., Lichner, L., 2022. Impact of duration of land abandonment on infiltration and surface runoff in acidic sandy soil. Agriculture, 12 (2): 168. DOI: https://doi.org/10.3390/agriculture12020168.
Treseder, K.K., 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist, 164 (2): 347-355. DOI: https://doi.org/10.1111/j.1469-8137.2004.01159.x.
Van Swaay, C., Cuttelod, A., Collins, S., Maes, D., López Munguira, M., Šašić, M., Settele, J., Verovnik, R., Verstrael, T., Warren, M., Wiemers, M., Wynhof, I., 2010. European red list of butterflies. Luxembourg: Publications Office of the European Union, 60 pp.
Yang, W., Qu, G., Kelly, A.R., Wu, G.L., Zhao, J., 2024. Positive effects of leguminous shrub encroachment on multiple ecosystem functions of alpine meadows and steppes greatly depended on increasing soil nutrient. Catena, 236: 107745. DOI: https://doi.org/10.1016/j.catena.2023.107745.
Zając, A., Zając, M., eds. 2001. Atlas rozmieszczenia roślin naczyniowych w Polsce. (Distribution atlas of vascular plants in Poland). Kraków: Pracownia Chorologii Komputerowej Instytutu Botaniki Uniwersytetu Jagiellońskiego, 714 pp.
Zhang, S., Jin, Y., Tang, J., Chen, X., 2009. The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy. Applied Soil Ecology, 41 (2): 215-222. DOI: https://doi.org/10.1016/j.apsoil.2008.11.002.
Zhang, Y., Li, X., Zhang, J., Hua, J., Li, J., Liu, D., Bhople, P., Ruan, H., Yang, N., 2023. Desertification induced changes in soil bacterial and fungal diversity and community structure in a dry-hot valley forest. Applied Soil Ecology, 189: 104953. DOI: https://doi.org/10.1016/j.apsoil.2023.104953.
Zhou, W., Li, Ch., Wang, S., Zhuobing, R., Stringer, L.C., 2023. Effects of vegetation restoration on soil properties and vegetation attributes in the arid and semi-arid regions of China. Journal of Environmental Management, 343: 11886. DOI: https://doi.org/10.1016/j.jenvman.2023.118186.