Article

Impact of climate change on root zone soil moisture in two Polish cities
Wpływ zmian klimatycznych na wilgotność gleby w strefie korzeniowej w dwóch polskich miastach
MUHAMMAD OWAIS KHAN, TOMASZ MARCINEK, ANNA KLAMERUS-IWAN
Sylwan 168 (10):717-735, 2024
DOI: https://doi.org/10.26202/sylwan.2024021
Available online: 2024-11-17
Open Access (CC-BY)
dynamic ARDL model • precipitation • relative humidity • root zone soil moisture • soil temperature • urban forestry

Abstract
Climate change has a significant effect on the perpetual state of soil moisture conditions. The objective of the study was to evaluate the effect of climatic parameters on status of root zone soil moisture. The research study has investigated the implications of various environmental variables such as earth skin temperature [°C], wind speed [m/s], relative humidity [%], maximum and minimum temperature [°C], and precipitation [mm] on root zone soil moisture of Polish cities namely Kraków and Warsaw. Kraków is characterized by a temperate climate zone, located in the central Europe. Warsaw is the capital of Poland, located in the central part of the country. It is essential to ascertain the stationarity nature of variables before the application of the autoregressive distributed lag (ARDL) model of Jordan and Phillips (2018). The findings of unit root tests by Augmented Dickey Fuller (ADF) and Phillips Perron (PP) illustrate the stationary status of variables at both levels 1 (0) and the first difference 1 (1). The results revealed improvement in the rhizosphere's moisture levels as affected by relative humidity, precipitation, and minimal temperature at two meters, both in short− and long−term periods. The earth's skin temperature, wind speed, and maximum temperature at two meters has a negative influence on soil moisture content. The results have depicted that a 10% increase in precipitation, minimum temperature, and relative humidity have enhanced the soil moisture content by 1.294%, 1.019%, and 0.193%, respectively, at Krakow, and 0.993%, 0.794%, 0.873% improvement at Warsaw in the long run. The long−term influence of maximum temperature, wind speed, and earth skin temperature has negatively affected soil moisture by –0.744%, –0.468%, –0.3875% in Kraków, and –1.472%, –0.761%, –1.614%, in Warsaw. This study has emphasized the significant effect of climate change on agriculture, forestry, and ecosystems, which has accentuated the requirement for adopting water conservation and smart agriculture practices. It is feasible to mitigate the detrimental effects of wind gusts and high temperatures by cultivating drought invulnerable plant varieties and practicing soil conservation methods. The adoption of these measures is pivotal in diminishing the influence of climate change on soil moisture and contributes significantly to sustainable agriculture practices, forestry, and ecosystems.

Literature
Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 (6): 716-723. DOI: https://doi.org/10.1109/TAC.1974.1100705.
Albertson, J.D., Montaldo, N., 2003. Temporal dynamics of soil moisture variability: 1. Theoretical basis. Water Resources Research, 39 (10): 1247. DOI: https://doi.org/10.1029/2002WR001616.
Andrews, D.W., 1991. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59 (3): 817-858. DOI: https://doi.org/10.2307/2938229.
Baldwin, D., Manfreda, S., Keller, K., Smithwick, E.A.H., 2017. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States. Journal of Hydrology, 546: 393-404. DOI: https://doi.org/10.1016/j.jhydrol.2017.01.020.
Banach, J., Kormanek, M., Małek, S., Durło, G., Możdżyński, B., 2023. Effect of precise control of irrigation and substrate compaction on seedling growth and root distribution in Norway spruce. Sylwan, 167 (12): 838-853. DOI: https://doi.org/10.26202/sylwan.2023085.
Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438 (7066): 303-309. DOI: https://doi.org/10.1038/nature04141.
Boczoń, A., Zachara, T., 2022. Effects of thinning methods on soil water resources and soil drought risk in Scots pine stands. Sylwan 166 (6): 390-402. DOI: https://doi.org/10.26202/sylwan.2022031.
Bouslihim, Y., Kacimi, I., Brirhet, H., Khatati, M., Rochdi, A., Pazza, N.E.A., Miftah, A., Yaslo, Z., 2016. Hydrologic modeling using SWAT and GIS, application to subwatershed Bab-Merzouka (Sebou, Morocco). Journal of Geographic Information System, 8 (1): 20-27. DOI: https://doi.org/10.4236/jgis.2016.81002.
Cai, Y., Zheng, W., Zhang, X., Zhangzhong, L., Xue, X., 2019. Research on soil moisture prediction model based on deep learning. PloS One, 14 (4): e0214508. DOI: https://doi.org/10.1371/journal.pone.0214508.
Chen, W., Li, Y.X., Wang, H.Y., Wang, J., Sun, C.J., 2022. Dynamic response characteristics of soil moisture on slope cultivated land and abandoned land to different precipitation intensities in Loess hilly region. Acta Ecologica Sinica, 42: 332-339.
Corona, R., Katul, G., Montaldo, N., 2022. The root-zone soil moisture spectrum in a Mediterranean ecosystem. Journal of Hydrology, 609: 127757. DOI: https://doi.org/10.1016/j.jhydrol.2022.127757.
Dai, A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3 (1): 52-58. DOI: https://doi.org/10.1038/nclimate1633.
Deng, Y., Wang, S., Bai, X., Luo, G., Wu, L., Cao, Y., Li, H., Li, C., Yang, Y., Hu, Z., Tian, S., 2020. Variation trend of global soil moisture and its cause analysis. Ecological Indicators, 110: 105939. DOI: https://doi.org/10.1016/j.ecolind.2019.105939.
Dickey, D.A., Fuller, W.A., 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74 (366a): 427-431. DOI: https://doi.org/10.1080/01621459.1979.10482531.
Dickey, D.A., Fuller, W.A., 1981. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49 (4): 1057-1072. DOI: https://doi.org/10.2307/1912517.
Dirmeyer, P.A., 2011. The terrestrial segment of soil moisture-climate coupling. Geophysical Research Letters, 38 (16): 16702. DOI: https://doi.org/10.1029/2011GL048268.
Donat, M.G., Lowry, A.L., Alexander, L.V., O’Gorman, P.A., Maher, N., 2016. More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6 (5): 508-513. DOI: https://doi.org/10.1038/nclimate2941.
Dukat, P., Bednorz, E., Ziemblińska, K., Urbaniak, M., 2022. Trends in drought occurrence and severity at mid-latitude European stations (1951-2015) estimated using standardized precipitation (SPI) and precipitation and evapotranspiration (SPEI) indices. Meteorology and Atmospheric Physics, 134 (1): 20. DOI: https://doi.org/10.1007/s00703-022-00858-w.
Enders, W., Siklos, P.L., 2001. Cointegration and threshold adjustment. Journal of Business and Economic Statistics, 19 (2): 166-176. DOI: https://doi.org/10.1198/073500101316970395.
Feng, H., Liu, Y., 2015. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin. Journal of Hydrology, 531: 1129-1140. DOI: https://doi.org/10.1016/j.jhydrol.2015.11.016.
Fischer, E.M., Seneviratne, S.I., Vidale, P.L., Lüthi, D., Schär, C., 2007. Soil moisture-atmosphere interactions during the 2003 European summer heat wave. Journal of Climate, 20 (20): 5081-5099. DOI: https://doi.org/10.1175/JCLI4288.1.
Ford, T.W., Harris, E., Quiring, S.M., 2014. Estimating root zone soil moisture using near-surface observations from SMOS. Hydrology and Earth System Sciences, 18 (1): 139-154. DOI: https://doi.org/10.5194/hess-18-139-2014.
Fries, A., Silva, K., Pucha-Cofrep, F., Ońate-Valdivieso, F., Ochoa-Cueva, P., 2020. Water balance and soil moisture deficit of different vegetation units under semiarid conditions in the Andes of southern Ecuador. Climate, 8 (2): 30. DOI: https://doi.org/10.3390/cli8020030.
Gazol, A., Camarero, J.J., Anderegg, W.R.L., Vicente-Serrano, S.M., 2017. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 26 (2): 166-176. DOI: https://doi.org/10.1111/geb.12526.
Ghajarnia, N., Kalantari, Z., Orth, R., Destouni, G., 2020. Close co-variation between soil moisture and runoff emerging from multi-catchment data across Europe. Scientific Reports, 10 (1): 4817. DOI: https://doi.org/10.1038/s41598-020-61621-y.
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., Seneviratne, S.I., 2014. Global assessment of trends in wetting and drying over land. Nature Geoscience, 7 (10): 716-721. DOI: https://doi.org/10.1038/ngeo2247.
Guo, X., Fu, Q., Hang, Y., Lu, H., Gao, F., Si, J., 2020. Spatial variability of soil moisture in relation to land use types and topographic features on hillslopes in the black soil (Mollisols) area of northeast China. Sustainability, 12 (9): 3552. DOI: https://doi.org/10.3390/su12093552.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., 2014. Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences, 111 (9): 3251-3256. DOI: https://doi.org/10.1073/pnas.1222475110.
Hagen, K., Berger, A., Gartner, K., Geitner, C., Kofler, T., Kogelbauer, I., Kohl, B., Markart, G., Meißl, G., Niedertscheider, K., 2020. Event-based dynamics of the soil water content at Alpine sites (Tyrol, Austria). Catena, 194: 104682. DOI: https://doi.org/10.1016/j.catena.2020.104682.
Hauser, M., Orth, R., Seneviratne, S.I., 2016. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophysical Research Letters, 43 (6): 2819-2826. DOI: https://doi.org/10.1002/2016GL068036.
Holsten, A., Vetter, T., Vohland, K., Krysanova, V., 2009. Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas. Ecological Modelling, 220 (17): 2076-2087. DOI: https://doi.org/10.1016/j.ecolmodel.2009.04.038.
Jasek-Kamińska, A., Zimnoch, M., Wachniew, P., Różański, K., 2020. Urban CO2 budget: spatial and seasonal variability of CO2 emissions in Krakow, Poland. Atmosphere, 11 (6): 629. DOI: https://doi.org/10.3390/atmos11060629.
Jasper, K., Calanca, P., Fuhrer, J., 2006. Changes in summertime soil water patterns in complex terrain due to climatic change. Journal of Hydrology, 327 (3-4): 550-563. DOI: https://doi.org/10.1016/j.jhydrol.2005.11.061.
Jiang, Y., Marchand, W., Rydval, M., Matula, R., Janda, P., Begović, K., Thom, D., Fruleux, A., Buechling, A., Pavlin, J., Nogueira, J., 2024. Drought resistance of major tree species in the Czech Republic. Agricultural and Forest Meteorology, 348: 109933. DOI: https://doi.org/10.1016/j.agrformet.2024.109933.
Jordan, S., Philips, A.Q., 2018. Cointegration testing and dynamic simulations of autoregressive distributed lag models. The Stata Journal, 18 (4): 902-923. DOI: https://doi.org/10.1177/1536867X1801800409.
Joseph, J., Gao, D., Backes, B., Bloch, C., Brunner, I., Gleixner, G., Haeni, M., Hartmann, H., Hoch, G., Hug, C., Kahmen, A., 2020. Rhizosphere activity in an old-growth forest reacts rapidly to changes in soil moisture and shapes whole-tree carbon allocation. Proceedings of the National Academy of Sciences, 117 (40): 24885-24892. DOI: https://doi.org/10.1073/pnas.2014084117.
Koster, R.D., Dirmeyer, P.A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C.T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., 2004. Regions of strong coupling between soil moisture and precipitation. Science, 305 (5687): 1138-1140. DOI: https://doi.org/10.1126/science.1100217.
Kostka, M., Zając, A., 2022. The impact of climate change on primary air treatment processes and energy demand in air conditioning systems – A case study from Warsaw, Poland. Energies, 15 (1): 355. DOI: https://doi.org/10.3390/en15010355.
Le, T., Bae, D.H., 2022. Causal impacts of El Nińo – Southern Oscillation on global soil moisture over the period 2015-2100. Earth’s Future, 10 (3): 2021EF002522. DOI: https://doi.org/10.1029/2021EF002522.
Li, X., Shao, M.A., Zhao, C., Liu, T., Jia, X., Ma, C., 2019. Regional spatial variability of root-zone soil moisture in arid regions and the driving factors – a case study of Xinjiang, China. Canadian Journal of Soil Science, 99 (3): 277-291. DOI: http://dx.doi.org/10.1139/cjss-2019-0006.
Lin, P.F., Zhu, X., He, Z.B., Du, J., Chen, L.F., 2018. Research progress on soil moisture temporal stability. Acta Ecologica Sinica, 38 (10): 3403-3413.
Liu, Y., Zhang, K., Li, Z., Liu, Z., Wang, J., Huang, P., 2020. A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. Journal of Hydrology, 590: 125440. DOI: https://doi.org/10.1016/j.jhydrol.2020.125440.
Lozano-Parra, J., Pulido, M., Lozano-Fondón, C., Schnabel, S., 2018. How do soil moisture and vegetation covers influence soil temperature in drylands of Mediterranean regions? Water, 10 (12): 1747. DOI: https://doi.org/10.3390/w10121747.
Mahmood, R., Littell, A., Hubbard, K.G., You, J., 2012. Observed data-based assessment of relationships among soil moisture at various depths, precipitation, and temperature. Applied Geography, 34: 255-264. DOI: https://doi.org/10.1016/j.apgeog.2011.11.009.
Manfreda, S., Brocca, L., Moramarco, T., Melone, F., Sheffield, J., 2014. A physically based approach for the estimation of root-zone soil moisture from surface measurements. Hydrology and Earth System Sciences, 18 (3): 1199-1212. DOI: https://doi.org/10.5194/hess-18-1199-2014.
McColl, K.A., Alemohammad, S.H., Akbar, R., Konings, A.G., Yueh, S., Entekhabi, D., 2017. The global distribution and dynamics of surface soil moisture. Nature Geoscience, 10 (2): 100-104. DOI: https://doi.org/10.1038/ngeo2868.
Meineke, E.K., Frank, S.D., 2018. Water availability drives urban tree growth responses to herbivory and warming. Journal of Applied Ecology, 55 (4): 1701-1713. DOI: https://doi.org/10.1111/1365-2664.13130.
Nakai, T., Katul, G.G., Kotani, A., Igarashi, Y., Ohta, T., Suzuki, M., Kumagai, T.O., 2014. Radiative and precipitation controls on root zone soil moisture spectra. Geophysical Research Letters, 41 (21): 7546-7554. DOI: https://doi.org/10.1002/2014GL061745.
Oglesby, R.J., Marshall, S., Erickson Iii, D.J., Roads, J.O., Robertson, F.R., 2002. Thresholds in atmosphere-soil moisture interactions: Results from climate model studies. Journal of Geophysical Research: Atmospheres, 107 (D14): ACL-15. DOI: https://doi.org/10.1029/2001JD001045.
Pająk, K., Małek, S., Kormanek, M., Jasik, M., 2022. The effect of peat substrate compaction on the macronutrient content of Scots pine Pinus sylvestris L. container seedlings. Sylwan, 166 (8): 537-550. DOI: https://doi.org/10.26202/sylwan.2022062.
Pardos, M., Del Río, M., Pretzsch, H., Jactel, H., Bielak, K., Bravo, F., Brazaitis, G., Defossez, E., Engel, M., Godvod, K., Jacobs, K., 2021. The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 481: 118687. DOI: https://doi.org/10.1016/j.foreco.2020.118687.
Peretti, M., Spennemann, P.C., Long, M.F., 2023. Trends in soil moisture content and water deficits in Argentina and the role of climate contribution. Theoretical and Applied Climatology, 152 (3): 1189-1201. DOI: https://doi.org/10.1007/s00704-023-04428-x.
Pesaran, M.H., Shin, Y., Smith, R.J., 2001. Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16 (3): 289-326. DOI: https://doi.org/10.1002/jae.616.
Phillips, P.C., Perron, P., 1988. Testing for a unit root in time series regression. Biometrika, 75 (2): 335-346. DOI: https://doi.org/10.2307/2336182.
Podwika, M., Solek-Podwika, K., Kaleta, D., Ciarkowska, K., 2020. The effect of land-use change on urban grassland soil quality (Southern Poland). Journal of Soil Science and Plant Nutrition, 20 (2): 473-483. DOI: https://doi.org/10.1007/s42729-019-00132-w.
Qiu, Y., Fu, B., Wang, J., Chen, L., 2001. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. Journal of Hydrology, 240 (3-4): 243-263. DOI: https://doi.org/10.1016/S0022-1694(00)00362-0.
Rohde, C., Iraheta, A., Beyer, M., Demir, G., Dubbert, M., 2024. Understanding water use strategies of Central European tree species in dependency on groundwater. European Geosciences Union General Assembly 2024 (EGU24), held 14-19 April, 2024 in Vienna, Austria. DOI: https://doi.org/10.5194/egusphere-egu24-1529.
Sandholt, I., Rasmussen, K., Andersen, J., 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79 (2-3): 213-224.
Schwingshackl, C., Hirschi, M., Seneviratne, S.I., 2017. Quantifying spatiotemporal variations of soil moisture control on surface energy balance and near-surface air temperature. Journal of Climate, 30 (18): 7105-7124. DOI: https://doi.org/10.1175/JCLI-D-16-0727.1.
Seager, R., Ting, M., Li, C., Naik, N., Cook, B., Nakamura, J., Liu, H., 2013. Projections of declining surface-water availability for the southwestern United States. Nature Climate Change, 3 (5): 482-486. DOI: https://doi.org/10.1038/nclimate1787.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., 2017. Forest disturbances under climate change. Nature Climate Change, 7 (6): 395-402. DOI: https://doi.org/10.1038/nclimate3303.
Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., Teuling, A.J., 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99 (3-4): 125-161. DOI: https://doi.org/10.1016/j.earscirev.2010.02.004.
Sławska, M., Sławski, M., 2017. Wpływ suszy na ściółkowo-glebowe zgrupowania skoczogonków (Collembola, Hexapoda) w lesie mieszanym. (Influence of drought on epigeic soil collembolan communities (Hexapoda) of moderately humid mixed deciduous forest). Sylwan, 161 (1): 71-80. DOI: https://doi.org/10.26202/sylwan.2016095.
Son, N.T., Chen, C.F., Chen, C.R., Chang, L.Y., Minh, V.Q., 2012. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation, 18: 417-427. DOI: https://doi.org/10.1016/j.jag.2012.03.014.
Srivastava, A., Saco, P.M., Rodriguez, J.F., Kumari, N., Chun, K.P., Yetemen, O., 2021. The role of landscape morphology on soil moisture variability in semi-arid ecosystems. Hydrological Processes, 35 (1): e13990. DOI: https://doi.org/10.1002/hyp.13990.
Staszel-Szlachta, K., Lasota, J., Kempf, M., Błońska, E., 2022. Effect of nitrogen deposition on root systems and exudates of seedlings of beech Fagus sylvatica L. in a temperate climate. Sylwan, 166 (12): 796-808. DOI: https://doi.org/10.26202/sylwan.2023004.
Stock, J.H., Watson, M.W., 1993. A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica, 61 (4): 783-820. DOI: https://doi.org/10.2307/2951763.
Torres-Rua, A.F., Ticlavilca, A.M., Bachour, R., McKee, M., 2016. Estimation of surface soil moisture in irrigated lands by assimilation of Landsat vegetation indices, surface energy balance products, and relevance vector machines. Water, 8 (4): 167. DOI: https://doi.org/10.3390/w8040167.
Trenberth, K.E., Dai, A., Van Der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., Sheffield, J., 2014. Global warming and changes in drought. Nature Climate Change, 4 (1): 17-22. DOI: https://doi.org/10.1038/nclimate2067.
Tronquo, E., Lievens, H., Bouchat, J., Defourny, P., Baghdadi, N., Verhoest, N.E., 2022. Soil Moisture retrieval using multistatic L-Band SAR and effective roughness modeling. Remote Sensing, 14 (7): 1650. DOI: https://doi.org/10.3390/rs14071650.
Turner, M.G., 2010. Disturbance and landscape dynamics in a changing world. Ecology, 91 (10): 2833-2849. DOI: https://doi.org/10.1890/10-0097.1.
van Oorschot, F., van der Ent, R.J., Hrachowitz, M., Alessandri, A., 2021. Climate controlled root zone parameters show potential to improve water flux simulations by land surface models. Earth System Dynamics Discussions, 12: 725-743. DOI: https://doi.org/10.5194/esd-12-725-2021.
Van Groenigen, K.J., Osenberg, C.W., Hungate, B.A., 2011. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature, 475 (7355): 214-216. DOI: https://doi.org/10.1038/nature10176.
Varallyay, G.Y., 1990. Influence of climatic change on soil moisture regime, texture, structure and erosion. Developments in Soil Science, 20: 39-49. DOI: https://doi.org/10.1016/S0166-2481(08)70480-X.
Wang, C., Fu, B., Zhang, L., Xu, Z., 2019. Soil moisture-plant interactions: A ecohydrological review. Journal of Soils and Sediments, 19: 1-9. DOI: https://doi.org/10.1007/s11368-018-2167-0.
Wang, C., Wang, S, Bojie, F.U., Zhang, L., Lu, N., Jiao, L., 2018. Stochastic soil moisture dynamic modelling: A case study in the Loess Plateau, China. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 109 (3-4): 437-444. DOI: https://doi.org/10.1017/S1755691018000658.
Wang, X., Gao, R., Yang, X., 2021. Responses of soil moisture to climate variability and livestock grazing in a semiarid Eurasian steppe. Science of The Total Environment, 781: 146705. DOI: https://doi.org/10.1016/j.scitotenv.2021.146705.
Wentz, F.J., Ricciardulli, L., Hilburn, K., Mears, C., 2007. How much more rain will global warming bring? Science, 317 (5835): 233-235. DOI: https://doi.org/10.1126/science.1140746.
Xu, W., Yuan, W., Dong, W., Xia, J., Liu, D., Chen, Y., 2013. A meta-analysis of the response of soil moisture to experimental warming. Environmental Research Letters, 8 (4): 044027. DOI: https://doi.org/10.1088/1748-9326/8/4/044027.
Yu, B., Liu, G., Liu, Q., Wang, X., Feng, J., Huang, C., 2018. Soil moisture variations at different topographic domains and land use types in the semi-arid Loess Plateau, China. Catena, 165: 125-132. DOI: https://doi.org/10.1016/j.catena.2018.01.020.
Zhan, Z., Qin, Q., Ghulan, A., Wang, D., 2007. NIR-red spectral space based new method for soil moisture monitoring. Science in China Series D: Earth Sciences, 50 (2): 283-289. DOI: https://doi.org/10.1007/s11430-007-2004-6.
Zhang, P., Xiao, P., Yao, W., Liu, G., Sun, W., 2020. Profile distribution of soil moisture response to precipitation on the Pisha sandstone hillslopes of China. Scientific Reports, 10 (1): 9136. DOI: https://doi.org/10.1038/s41598-020-65829-w.
Zhou, S., Williams, A.P., Berg, A.M., Cook, B.I., Zhang, Y., Hagemann, S., Lorenz, R., Seneviratne, S.I., Gentine, P., 2019. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proceedings of the National Academy of Sciences, 116 (38): 18848-18853. DOI: https://doi.org/10.1073/pnas.1904955116.
Zscheischler, J., Westra, S., Van Den Hurk, B.J., Seneviratne, S.I., Ward, P.J., Pitman, A., AghaKouchak, A., Bresch, D.N., Leonard, M., Wahl, T., Zhang, X., 2018. Future climate risk from compound events. Nature Climate Change, 8 (6): 469-477. DOI: https://doi.org/10.1038/s41558-018-0156-3.