Impacts of forest fires on soil: Exploring the effects on biotic and abiotic components
Wpływ pożarów lasu na glebę: oddziaływanie na składniki biotyczne i abiotyczne
Sylwan 168 (8):601-614, 2024
DOI:
https://doi.org/10.26202/sylwan.2024031Available online: 2024-09-18
Open Access (CC-BY)
abiotic components • biotic • forest fires • soil exploring
Forest fires are a widespread occurrence in ecosystems worldwide, impacting both vegetation and soil. The effects of forest fires, as well as prescribed fires, on forest soil are complex, influencing soil organic matter, macro and micro−nutrients, and physical properties such as texture, colour, pH, and bulk density, along with soil biota. The magnitude of the impact on forest soil depends on factors such as fire intensity, fuel load, and soil moisture. The severity and frequency of fire determine whether it is beneficial or harmful to the soil. Low−intensity fires can enhance plant available nutrients through the combustion of litter and soil organic matter, promoting rapid growth of herbaceous plants and increased nutrient storage. Conversely, high intensity fires can lead to complete loss of soil organic matter, volatilization of vital elements (N, P, S, K), and microbial death. Additionally, intense forest fires generate hydrophobic organic compounds that result in water−repellent soils. Forest fires also have long−term effects on forest soil. This paper aims to review the impacts of forest fires on various soil properties crucial for maintaining a healthy ecosystem.
Aref, I.M., Atta, H.A., Ghamade, A.R., 2011. Effect of forest fires on tree diversity and some soil properties. International Journal of Agriculture and Biology, 13: 659-664.
Bird, M., Veenendaal, E., Moyo, C., Lloyd, J., Frost, P., 2000. Effect of fire and soil texture on soil carbon in a sub-humid savanna (Matopos, Zimbabwe). Geoderma, 94 (1): 71-90. DOI: https://doi.org/10.1016/S0016-7061(99)00084-1.
Boerner, R.E., 1982. Fire and nutrient cycling in temperate ecosystems. BioScience, 32 (3): 187-192. DOI: https://doi.org/10.2307/1308941.
Boerner, R.E.C., Hart, S., Huang, J., 2009. Impacts of fire and fire surrogate treatments. Ecological Applications, 19 (2): 338-358. DOI: https://doi.org/10.1890/07-1767.1.
Bond, W.J., Keeley, J.E., 2005. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystem. Trends in Ecology and Evolution, 20 (7): 387-394. DOI: https://doi.org/10.1016/j.tree.2005.04.025.
Caldwell, T.G., Johnson, D.W., Miller, W.W., Qualls, R.G., 2002. Forest floor carbon and nitrogen loss due to prescribed fire. Soil Science Society of American Journal, 66: 262-267. DOI: https://doi.org/10.2136/SSSAJ2002.2620.
Cerdŕ, A., Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74 (3): 256-263. DOI: https://doi.org/10.1016/j.catena.2008.03.010.
Certini, G., 2005. Effect of fire on properties of forest soils: a review. Oecologia, 143: 1-10. DOI: https://doi.org/10.1007/s00442-004-1788-8.
Coplen, T.B., Brand, W.A., Gehre, M., Gröning, M., Meijer, H.A.J., Toman, B., Verkouteren, R.M., 2006. New guidelines for 13C measurements. Analytical Chemistry, 78 (7): 2439-2441. DOI: https://doi.org/10.1021/ac052027c.
Craswell, E.T., Lefroy, R.D.B., 2001. The role and function of organic matter in tropical soils. Nutrient Cycling in Agroecosystem, 61: 7-18. DOI: https://doi.org/10.1023/A:1013656024633.
DeBano, L.F., Conrad, C.E., 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology, 59 (3): 489-497. DOI: https://doi.org/10.2307/1936579.
DeBano, L.F., 2000. The role of fire and soil heating on water repellency in wildland environments: A review. Journal of Hydrology, 231-232: 195-206. DOI: https://doi.org/10.1016/S0022-1694(00)00194-3.
DeBano, L., Neary, D., Ffolliott, P., 1998. Fire effects on ecosystems. John Wiley and Sons, 352 pp.
Doerr, S., Woods, S., Martin, D., Casimoro, M., 2009. ‘Natural background’ soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence. Journal of Hydrology, 371 (1-4): 12-21. DOI: https://doi.org/10.1016/j.jhydrol.2009.03.011.
Fernández, I., Cabaneiro, A., Carballas, T., 1997. Organic matter changes immediately after a wildfire in an atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry, 29 (1): 1-11. DOI: https://doi.org/10.1016/S0038-0717(96)00289-1.
Frissell Jr, S.S., 1973. The importance of fire as natural ecological factor in Itasca State Park, Minnesota. Quaternary Research, 3 (3): 397-407. DOI: https://doi.org/10.1016/0033-5894(73)90005-7.
García-Marco, S., González-Prieto, S., 2008. Short- and medium- term effects of fire and fire-fighting chemicals on soil micronutrient availability. The Science of Total Environment, 407 (1): 297-303. DOI: https://doi.org/10.1016/j.scitotenv.2008.08.021.
Goforth, B.R., Graham, R.C., Hubbert, K.R., Zanner, C.W., Minnich, R.A., 2005. Spatial distribution and properties of ash and thermally altered soils after high-severity forest fire, southern California. Journal of Wildland Fire, 14 (4): 343-354. DOI: https://doi.org/10.1071/WF05038.
González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H., 2004. The effect of fire on soil organic matter a review. Environment International, 30: 855-870. DOI: https://doi.org/10.1016/j.envint.2004.02.003.
Hart, S.C., DeLuca, T.H., Newman, G.S., MacKenzie, M.D., Boyle, S.I., 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management, 220 (1-3): 166-184. https://doi.org/10.1016/j.foreco.2005.08.012.
Hilszczańska, D., Gil, W., Olszowska, G., 2019. Structure of post-fire ectomycorrhizal communities of Scots pine stand in a dry coniferous forest habitat. Sylwan, 163 (1): 71-79. DOI: https://doi.org/10.26202/sylwan.2018097.
Imeson, A.C., Verstraten, J.M., van Mulligen, E.J., Sevink, J., 1992. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena, 19 (3-4): 345-361. DOI: https://doi.org/10.1016/0341-8162(92)90008-Y.
Jaatinen, K., Knief, C., Dunfield, P.F., Yrjĺlĺ, K., Fritze, H., 2004. Methanotrophic bacteria in boreal forest soil after fire. FEMS Microbiology Ecology, 50 (3): 195-202. DOI: https://doi.org/10.1016/j.femsec.2004.06.013.
Jain, T.B., Gould, W.A., Graham, R.T., Pilliod, D.L., Lentile, L.B., González, G., 2008. A soil burn severity index for understanding soil-fire relations in tropical forests. A Journal of the Human Environment, 37 (7): 563-568. DOI: https://doi.org/10.1579/0044-7447-37.7.563.
Johnson, D.W., 1992. Effects of forest management on soil carbon storage. Water, Air, and Soil Pollution, 64: 83-120. DOI: https://doi.org/10.1016/S0378-1127(00)00282-6.
Ketterings, Q.M., Bigham, J.M., 2000. Soil color as an indicator of slash-and-burn fire severity and soil fertility in Sumatra, Indonesia. Soil Science Society of American Journal, 64: 1826-1833. DOI: https://doi.org/10.2136/sssaj2000.6451826x.
Khan, M.O., Klamerus-Iwan, A., Kupka, D., Słowik-Opoka, E., 2023. Short-term impact of different doses of spent coffee grounds, salt, and sand on soil chemical and hydrological properties in an urban soil. Environmental Science and Pollution Research, 30: 86218-86231. DOI: https://doi.org/10.1007/s11356-023-28386-z.
Knicker, H., 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 85: 91-118. DOI: https://doi.org/10.1007/s10533-007-9104-4.
Knight, H., 1996. Loss of nitrogen from the forest floor by burning. The Forestry Chronicle, 42 (2): 149-152. DOI: https://doi.org/10.5558/tfc42149-2.
Knorr, W., Pytharoulis, I., Petropoulos, G.P., 2011. Combined use of weather forecasting and satellite remote sensing information for fire risk, fire and fire impact monitoring. Computational Ecology and Software, 1 (2): 112-120.
Kodandapani, N., 2001. Forest fires: Origin and ecological paradoxes. Resonance, 6 (11): 34-41.
Kraus, D., Goldammer, J., 2007. Fire regimes and ecosystems: An overview of fire ecology in tropical ecosystems. Proceedings of the Forest Fires in India, pp. 19-23.
Kutiel, P., Naveh, Z., 1987. The effect of fire on nutrients in a pine forest soil. Plant and Soil, 104: 269-274. DOI: https://doi.org/10.1007/BF02372541.
Lal, R., 2004 Agricultural activities and the global carbon cycle. Nutrient Cycling in Agroecosystems, 70: 103-116. DOI: https://doi.org/10.1023/B:FRES.0000048480.24274.0f.
Letey, J., 2001. Causes and consequences of fire-induced soil water repellency. Hydrological Processes, 15 (15): 2867-2875. DOI: https://doi.org/10.1002/hyp.378.
MacDonald, L.H., Huffman, E.L., 2004. Post-fire soil water repellency: Persistence and soil moisture thresholds. Soil Science Society of America Journal, 68: 1729-1734. DOI: https://doi.org/10.2136/sssaj2004.1729.
Marafa, L.M., Chau, K., 1999. Effect of hill fire on upland soil in Hong Kong. Forest Ecology and Management, 120 (1-3): 97-104. DOI: https://doi.org/10.1016/S0378-1127(98)00528-3.
Marion, G., Moreno, J., Oechel, W., 1991. Fire severity, ash deposition, and clipping effects on soil nutrients in chaparral. Soil Science Society of America Journal, 55 (1): 235-249. DOI: https://doi.org/10.2136/sssaj1991.03615995005500010040x.
Mataix-Solera, J., Arcenegui, V., Tessler, N., Zornoza, R., Wittenberg, L., Martínez, C., Caselles, P., Pérez--Bejarano, A., 2013. Soil properties as key factors controlling water repellency in fire-affected areas: Evidences from burned sites in Spain and Israel. CATENA, 108: 6-13. DOI: https://doi.org/10.1016/j.catena.2011.12.006.
Molina, M., Fuentes, R., Calderón, R., Escudey, M., Avendańo, K., Gutiérrez, M., Chang, A., 2007. Impact of forest fire ash on surface charge characteristics of Andisols. Soil Science, 172 (10): 820-834. DOI: https://doi.org/10.1097/ss.0b013e31814cee44.
Murphy, J.D., Johnson, D.W., Miller, W.W., Walker, R.F., Carroll, E.F., Blank R.R., 2006. Wildfire effects on soil nutrients and leaching in a Tahoe Basin Watershed. Journal of Environmental Quality, 35 (2): 479-489. DOI: https://doi.org/10.2134/jeq2005.0144.
Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., 1999. Fire effects on belowground sustainability: A review and synthesis. Forest Ecology and Management, 122 (1-2): 51-71. DOI: https://doi.org/10.1016/S0378-1127(99)00032-8.
Neary, D.G., Ryan, K.C., DeBano, L.F., 2008. Wildland fire in ecosystems: Effects of fire on soils and water. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station USA. DOI: https://doi.org/10.2737/RMRS-GTR-42-V4.
Neff, J., Harden, J., Gleixner, G., 2005. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Canadian Journal of Forest Research, 35: 2178-2187. DOI: https://doi.org/10.1139/x05-154.
Olchowik, J., Hilszczańska, D., Studnicki, M., Malewski, T., Kariman, K., Borowski, Z., 2021. Post-fire dynamics of ectomycorrhizal fungal communities in a Scots pine (Pinus sylvestris L.) forest of Poland. PeerJ, 9: e12076. DOI: http://doi.org/10.7717/peerj.12076.
Otsuka, S., Sudiana, I., Komori, A., Isobe, K., Deguchi, S., Nishiyama, M., Shimizu, H., Senoo, K., 2008. Community structure of soil bacteria in a tropical rainforest several years after fire. Microbes and Environments, 23 (1): 49-56. DOI: https://doi.org/10.1264/jsme2.23.49.
Rashid, A., Ahmed, T., Ayub, N., Khan, A.G., 1997. Effect of forest fire on number, viability and post-fire reestablishment of arbuscular mycorrhizae. Mycorrhiza, 7: 217-220. DOI: https://doi.org/10.1007/s005720050183.
Reeder, C.J., Jurgensen, M.F., 1979. Fire-induced water repellency in forest soils of upper Michigan. Canadian Journal of Forest Research, 9 (3): 369-373. DOI: https://doi.org/10.1139/x79-06.
Robichaud, P., Hungerford, R., 2000. Water repellency by laboratory burning of four northern Rocky Mountain forest soils. Journal of Hydrology, 231-232: 207-219. DOI: https://doi.org/10.1016/S0022-1694(00)00195-5.
Roshan A., Biswa A., 2023. Fire-induced geochemical changes in soil: Implication for the element cycling. Science of The Total Environment https://www.sciencedirect.com/journal/science-of-the-total-environment, 868: 161714. DOI: https://doi.org/10.1016/j.scitotenv.2023.161714.
Sankaran M., Hanan N.P., Scholes R.J., et al., 2005. Determinants of woody cover in African savannas. Nature, 438 (8): 846-849. DOI: https://doi.org/10.1038/nature04070.
Schafer, J.L., Mack, M.C., 2010. Short-term effects of fire on soil and plant nutrients. Plant Soil, 334: 433-447. DOI: https://doi.org/10.1007/s11104-010-0394-2.
Spinage, C.A., 2012. Fire Part I: Introduction and history. In: C.A. Spinage, ed. African ecology benchmarks and historical perspectives. London: Springer, pp. 251-292., DOI: https://doi.org/10.1007/978-3-642-22872-8.
Stendell, E.R., Horto, T.R., Bruns, T.D., 1999. Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycological Research, 103 (10): 1353-1359. DOI: https://doi.org/10.1017/S0953756299008618.
Thonicke, K., Venevsky, S., Sitch, S., Cramer, W., 2001. The role of fire disturbance for global vegetation dynamics: coupling fire into a dynamic global vegetation model. Global Ecology and Biogeography, 10 (6): 661-677. DOI: https://doi.org/10.1046/j.1466-822X.2001.00175.x.
Tufeccioglu, A., Küçük , M., Sag˘lam, B., Bilgili, E., Altun, L., 2010. Soil properties and root biomass responses to prescribed burning in young Corsican pine (Pinus nigra Arn.) stands. Journal of Environmental Biology, 31 (3): 369-373.
Ulery, A.L., Graham, R.C., 1993. Forest fire effects on soil color and texture. Soil Science Society of America Journal, 57 (1): 135-140. DOI: https://doi.org/10.2136/sssaj1993.03615995005700010026x.
Vázquez, F.J., Acea, M.J., Carballas, T., 1993. Soil microbial populations after wildfire. FEMS Microbiology Ecology, 13 (2): 93-103. DOI: https://doi.org/10.1111/j.1574-6941.1993.tb00055.x.
Wan, S., Hui, D., Luo, Y., 2001. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis. Ecological Applications, 11 (5): 1349-1365. DOI: https://doi.org/10.1890/1051-0761(2001)011[1349:FEONPA]2.0.CO;2.
Wardle, D.A., Nilsson, M.C., Zackrisson, O., 2008. Fire-derived charcoal causes loss of forest humus. Science, 320: 629. DOI: https://doi.org/10.1126/science.1154960.
Wikars, L.O., Schimmel, J., 2001. Immediate effects of fire-severity on soil invertebrates in cut and uncut pine forests. Forest Ecology and Management, 141 (3): 189-200. DOI: https://doi.org/10.1016/S0378-1127(00)00328-5.