Article

Effect of phosphites as stimulants for improving the health of 60−year−old pedunculate oak Quercus robur L. trees in southwestern Poland
Wpływ fosforynów jako stymulatorów zdrowotności 60−letnich dębów szypułkowych Quercus robur L. w południowo−zachodniej Polsce
HEORHIY HRYNYK, TOMASZ OSZAKO, MIŁOSZ TKACZYK, OLENA HRYNYK, STANISŁAW MAŁEK
Sylwan 168 (8):561-586, 2024
DOI: https://doi.org/10.26202/sylwan.2023087
Available online: 2024-09-18
Open Access (CC-BY)
defoliation • integrated pest management • root systems • Syn−index • vitality

Abstract
This article is part of the search for alternatives to the use of pesticides (especially elicitors of resistance) within the context of integrated pest management (IPM). For this reason, resistance triggers based on potassium phosphite were used in the form of oak stem spraying. The aim of the study was to assess the influence of phosphites applied as a commercial product called Kalex. The changes in the immediate environment and the development of root systems and tree crowns (based on defoliation and health indicators) were assessed. The treatment of oak stems with potassium phosphite had no negative effects on the forest environment. The acidity (pH) of the soil did not change nor did the content of Mg and Ca. Phosphorus and potassium from the treatments were taken up by the living part of the bark and transported to the fine roots. However, some of the treatments certainly entered the soil via the logs when it rained. Thus, these elements also reached the vicinity of the roots, where they were present in larger quantities. As a result of leaf loss (defoliation), the crowns of the control trees were more thinned out than those of the trees treated with the phosphite preparation. Over several years, this led to a decrease in the health of the control trees, i.e. a change in the crown architecture (deformation due to the formation of short shoots) expressed in vitality grades. The calculated synthetic damage index (Syn), which takes into account the degree of defoliation and health, was also higher in the control trees than in the treated trees indicating the effectiveness of the treatment with the commercial product Kalex. The fine roots of the treated oaks had more favourable development parameters than the corresponding roots of the control trees especially in terms of length, number and surface area. This increased the ability of the treated oaks to take up the water needed to increase photosynthetic efficiency in order to feed the roots. However, in a situation of extreme drought in 2015 resulted in the death of the fine roots of the oaks (independent of the treatment) and continued the following year. Only in the 2017 season, when soil moisture improved significantly, did the oaks return to the state of root development before the severe drought. As a result, the percentage of dying trees in the treated tree group was statistically lower than in the control group. The treated oaks (especially those that were up to 30% defoliated) survived better during the five−year observation period (2013−2017) and were able to effectively absorb nutrients and water from the soil due to the better condition of their fine roots which was reflected in better shoot development in the crowns (assessed by defoliation, vigour and Syn−index).

Literature
Bloom, A.J., Chapin, F.S., Mooney, H.A., 1985. Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics, 16: 363-392.
Chapin, F.S., 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematic, 11: 233-260.
Crane, C.E., Shearer, B.L., 2014. Comparison of phosphite application methods for control of Phytophthora cinnamomi in threatened communities. Australasian Plant Pathology, 43: 143-149. DOI: https://doi.org/10.1007/s13313-013-0260-9.
Dmyterko, E., 1998. Metody określania uszkodzeń drzewostanów dębowych. (Methods for assessing damage in oak stands). Sylwan, 142 (10): 29-38.
Dmyterko, E., Bruchwald, A. 2000. Metody określania stopnia uszkodzenia drzewostanów bukowych i ich weryfikacja. (The methods of assessing the level of damage to beech stands and verification of these methods). Sylwan, 144 (5): 49-58.
Dmyterko, E., Wojtan, R., Bruchwald, A., 2003. Stan zdrowotny drzewostanów jesionowych (Fraxinus excelsior L.) nadleśnictwa Mircze. [Health condition of ash stands (Fraxinus excelsior L.) in Mircze Forest District]. Sylwan, 147 (12): 9-18. DOI: https://doi.org/10.26202/sylwan.2003241.
Erwin, D.C., Ribeiro, O.K., 1996. Phytophthora diseases worldwide. St. Paul: APS Press, 592 pp.
Eshraghi, L.E., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G.S., O’Brien, P.A., 2011. Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60 (6): 1086-1095. DOI: https://doi.org/10.1111/j.1365-3059.2011.02471.x.
Fathi, Z., Zamani, K., Malboobi, M., 2021. Phosphite, biotechnology, modern agriculture. Crop Biotechnology, 10 (32): 55-70.
Fotyma, M., Mercik, S., 1995. Chemia rolna. Warszawa: Państwowe Wydawnictwo Naukowe, 356 pp.
Garbelotto, M., Rizzo, D.M., Marais, L., 2002. Phytophthora ramorum and sudden oak death in California: IV. Preliminary studies on chemical control. USDA Forest Service General Technical Report No. PSW-GTR, 184: 811-818.
Garbelotto, M., Schmidt, D.J., Harnik, T.Y., 2007. Phosphite injections and bark application of phosphite+ Pentrabark™ control sudden oak death in coast live oak. Arboriculture and Urban Forestry (AUF), 33 (5): 309-317. DOI: https://doi.org/10.48044/jauf.2007.035.
Guest, D., Grant, B., 1991. The complex action of phosphonates as antifungal agents. Biological Reviews, 66: 159-187. DOI: https://doi.org/10.1111/j.1469-185X.1991.tb01139.x.
Guest, D.I., Bompeix, G., 1990. The complex mode of action of phosphonates. Australasian Plant Pathology, 19 (4): 113-115. DOI: https://doi.org/10.1071/APP9900113.
Hardy, G.S.J., Barrett, S., Shearer, B.L., 2001. The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology, 30 (2): 133-139. DOI: https://doi.org/10.1071/AP01012.
Hodge, A., 2004. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162: 9-24. DOI: https://doi.org/10.1111/j.1469-8137.2004.01015.x.
James, F., 2006. Statistical methods in experimental physics. World Scientific Publishing Company, 345 pp.
Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A.G., Aguín Casal, O., ..., Peréz-Sierra, A., 2016. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology, 46 (2): 134-163. DOI: https://doi.org/10.1111/efp.12239.
Keča, N., Tkaczyk, M., Żółciak, A., Stocki, M., Kalaji, H.M., Nowakowska, J.A., Oszako, T., 2018. Survival of European ash seedlings treated with phosphite after infection with the Hymenoscyphus fraxineus and Phytophthora species. Forests, 9 (8): 442. DOI: https://doi.org/10.3390/f9080442.
Kowalski, T., 1996. Oak decline II. Fungi associated with various disease symptoms on over ground portions of middle-age and old oak (Quercus robur L.). European Journal of Plant Pathology, 3: 136-152.
Lakin, H.F., 1980. Biometriâ. Moskva: Vysšaâ Škola, 293 pp.
Lambers, H., Shane, M.W., Cramer, M.D., Pearse, S.J., Veneklaas, E.J., 2006. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Annals of Botany, 98 (4): 693-713. DOI: https://doi.org/10.1093/aob/mcl114.
Marçais, B., Desprez-Loustau, M.L., 2014. European oak powdery mildew: Impact on trees, effects of environmental factors, and potential effects of climate change. Annals of Forest Science, 71: 633-642. DOI: https://doi.org/10.1007/s13595-012-0252-x.
Matsiakh, I., Oszako, T., Kramarets, V., Nowakowska, J.A., 2016. Phytophthora and Pythium species detected in rivers of the Polish-Ukrainian border areas. Baltic Forestry, 22 (2): 230-238.
McCormack, M.L., Iversen, C.M., 2019. Physical and functional constraints on viable belowground acquisition strategies. Frontiers in Plant Science, 10: 1-12. DOI: https://doi.org/10.3389/fpls.2019.01215.
Michel, A., Seidling, W., eds. 2016. Forest condition in Europe: 2016 technical report of ICP forests: Report under the UNECE convention on long-range transboundary air pollution (CLRTAP). Wienna: BFW Austrian Research Centre for Forests, 206 pp.
Müller, E., Stierlin, H.R., 1990. Sanasilva Kronenbilder: mit Nadel-und Blattverlustprozenten. Birmensdorf: Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, 129 pp.
Natura, 2002. Natura 2000 – standardowy formularz danych. Obszar PLH300002 Uroczyska Płyty Krotoszyńskiej, 2002. Modificatios of 2013, 9 pp.
Ostrowska, A., Gawliński, S., Szczubiałka, Z., 1991. Metody analizy i oceny właściwości gleb i roślin. Warszawa: Instytut Ochrony Środowiska, 350 pp.
Oszako, T., 2007. Przyczyny masowego zamierania drzewostanów dębowych. (Causes of oak stand decline). Sylwan, 151 (6): 62-72. DOI: https://doi.org/10.26202/sylwan.2006053.
Oszako, T., Sikora, K., Belbahri, L., Nowakowska, J.A., 2016. Molecular detection of oomycetes species in water courses. Folia Forestalia Polonica ser. A Forestry, 58 (4): 246-251. DOI: https://doi.org/10.1515/ffp-2016-0028.
Pacia, A., Drozdowski, S., Malewski, T., Borowik, P., Wilamowski, K., Bakier, S., Oszako, T., 2024. Use of phosphite preparations to protect ash seedlings Fraxinus excelsior L. against Phytophthora spp. and Hymenoscyphus fraxineus pathogens. Forests, 15 (5): 829. DOI: https://doi.org/10.3390/f15050829.
Przybył, K., 1999. Diseased changes in root systems of Quercus robur L. and Betula pendula Roth trees and fungi identified in roots dead showing decay. Zeszyty Naukowe Akademii Rolniczej w Krakowie. Sesja Naukowa, 63: 143-152.
Pscheidt, J.W., Ocamb, C.M., 2013. Fungicide theory of use and mode of action. Pacific Northwest Plant Disease Management Handbook. Corvallis: Oregon State University. Available from: http://pnwhandbooks.org/plantdisease [accessed: 7.04.2021].
Roloff, A., 2001. Baumkronen. Verständnis und praktische Bedeutung eines komplexen Naturphänomens. Stuttgart: Verlag Eugen Ulmer GmbH and Co, 181 pp.
Sariyildiz, T., Anderson, J.M., 2005. Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. Forest Ecology and Management, 210 (1-3): 303-319. DOI: https://doi.org/10.1016/j.foreco.2005.02.043.
Shearer, B.L., Crane, C.E., Cochrane, A., 2004. Quantification of the susceptibility of the native flora of the south-west botanical province, Western Australia, to Phytophthora cinnamomi. Australian Journal of Botany, 52 (4): 435-443. DOI: https://doi.org/10.1071/BT03131.
Shearer, B.L., Fairman, R.G., Grant, M.J., 2006. Effective concentration of phosphite in controlling Phytophthora cinnamomi following stem injection of Banksia species and Eucalyptus marginata. Forest Pathology, 36 (2): 119-135. DOI: https://doi.org/10.1111/j.1439-0329.2006.00440.x.
Solla, A., Moreno, G., Malewski, T., Jung, T., Klisz, M., Tkaczyk, M., Siebyla, M., Pérez, A., Cubera, E., Hrynyk, H., Szulc, W., Rutkowska, B.J., Martín, A., Belbahri, L., Oszako, T., 2021. Phosphite spray for the control of oak decline induced by Phytophthora in Europe. Forest Ecology and Management, 485: 118938. DOI: https://doi.org/10.1016/j.foreco.2021.118938.
StatSoft, 2011. Statistica (data analysis software system), version 10. Available from: www.statsoft.com http://www.statsoft.com.
Tkaczyk, M., Kubiak, K.A., Sawicki, J., Nowakowska, J.A., Oszako, T., 2016. Wykorzystanie związków fosfo-rynowych w leśnictwie. (The use of phosphates in forestry). Leśne Prace Badawcze, 77 (1): 76-81. DOI: https://doi.org/10.1515/frp-2016-0009.
Walker, T.W., Syers, J.K., 1976. The fate of phosphorus during pedogenesis. Geoderma, 15: 1-19.
Weibull, W., 1951. A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18: 293-297.
Wieczorek, W., Orlikowski, L., Świętosławski, J., Ptaszek, M., 2010. Nowy fosforyn do ochrony roślin ozdobnych przed gatunkami phytophthora. Zeszyty Problemowe Postępów Nauk Rolniczych, 554: 277-283.
Wilkinson, C.J., Holmes, J.M., Dell, B., Tynan, K.M., McComb, J.A., Shearer, B.L., Colquhoun, I.J., Hardy, G.S.J., 2001. Effect of phosphite on in planta zoospore production of Phytophthora cinnamomi. Plant Pathology, 50 (5): 587-593. DOI: https://doi.org/10.1046/j.1365-3059.2001.00605.x.
WinRHIZO, 2014. Image analysis for plant science. Available from: https://regent.qc.ca/assets/winrhizo_software.html [accessed: 01.03.2022].