Can battues radically reduce the population of low−density wild boars under conditions of ASF risk in agricultural landscapes?
Czy w warunkach zagrożenia ASF w krajobrazie rolniczym polowania zbiorowe mogą radykalnie zmniejszyć populację dzików o niskim zagęszczeniu?
Sylwan 168 (6):423-433, 2024
DOI:
https://doi.org/10.26202/sylwan.2023106Available online: 2024-07-21
Open Access (CC-BY)
ASF • disease control • prevention • wild boar • wildlife management
In Central Poland, in the conditions of ASF threat, in January 2019, a series of battues was organised to reduce the wild boar population. Hunting took place in a typical Central European landscape of a mosaic of vast arable fields, fallow lands, wet reed beds and small forests ranging in size from a few to several hundred hectares. Battues were used to reduce wild boar quickly and drastically in the area directly adjacent to places with confirmed cases of ASF. Hunting organised at the same time took place on 29 neighboring hunting grounds with a total area of 150,000 ha. Usually, a few hunters with beaters led areas from a few to over 100 ha. Due to limitations in the availability of a reliable wild boar census method, it was assumed that during subsequent battues, the number of recorded and/or shot wild boars would consistently decrease because of previous hunts. 563 drives with a total area of about 20,000 ha resulted in the shooting of only 69 wild boars out of 359 counted during hunting. It was found that neither the average wild boar density recorded in the drives, nor the average number of animals shot per 100 ha drives decreased significantly between successive battues. The level of exploitation of the population expressed by the % of group reduction, was at a low level of about 30%, which does not guarantee population reduction. Battues as a traditional hunting technique, but also invasive method are not an effective and should not be used to reduce the wild boar population under ASF threat conditions in rural landscapes. What’s more, their negative effects, e.g. dispersion of wild boar from areas covered by ASF, may outweigh the dubious benefits. The question about the effective and at the same time the least controversial method of wild boar depopulation from the social point of view remains open.
Biondi, V., Monti, S., Landi. A., Pugliese, M., Zema, E., Passantino, A., 2022. Has the spread of African Swine Fever in the European Union been impacted by COVID-19 pandemic? International Journal of Environmental Research Public Health, 19 (9): 5360. DOI: https://doi.org/10.3390/ijerph19095360.
Boitani, L., Mattei, L., Nonis, D., Corsi, F., 1994. Spatial and activity patterns of wild boar in Tuscany, Italy. Journal of Mammalogy, 75 (3): 600-612. DOI: https://doi.org/10.2307/1382507.
Briedermann, L., 1990. Schwarzwild. Deutscher Landwirtschaftsverlag JNN Wildbiologie. Melsungen: Neuman-Neudmann, 540 pp.
Calenge, C., Maillard, D., Vassant, J., Brandt, S., 2002. Summer and hunting season home ranges of wild boar (Sus scrofa) in two habitats in France. Game and Wildlife Science, 19 (4): 281-301.
Desvars-Larrive, A., Käsbohrer, A., 2022. Surveillance and control of African Swine Fever in early phase of the COVID-19 pandemic, March-May 2020: A multi-country e-survey. Frontiers in Veterinary Science, 6 (9): 867631. DOI: https://doi.org/10.3389/fvets.2022.867631.
EFSA, 2018. African swine fever in wild boar. EFSA Journal, 16 (7): 5344. DOI: https://doi.org/10.2903/j.efsa.2018.5344.
Fischer, M., Hühr, J., Blome, S., Conraths, F.J., Probst, C., 2020. Stability of African Swine Fever virus in carcasses of domestic pigs and wild boar experimentally infected with the ASFV ‘Estonia 2014’ isolate. Viruses, 12 (10): 1118. DOI: https://doi.org/10.3390/v12101118.
Frant, M., Gal, A., Bocian, Ł., Ziętek-Barszcz, A., Niemczuk, K., Woźniakowski, G., 2021. African Swine Fever Virus (ASFV) in Poland in 2019 – Wild Boars: Searching Pattern. Agriculture, 11 (1): 45. DOI: https://doi.org/10.3390/agriculture11010045.
Gethöffer, F., Sodeikat, G., Pohlmeyer, K., 2007. Reproductive parameters of wild boar (Sus scrofa) in three different parts of Germany. European Journal of Wildlife Research, 53 (4): 287-297. DOI: https://doi.org/10.1007/s10344-007-0097-z.
Giménez-Anaya, A., Herrero, J., García-Serrano, A., García-González, R., Prada, C., 2016. Wild boar battues reduce crop damages in a protected area. Folia Zoologica, 65 (3): 214-220. DOI: https://doi.org/10.25225/fozo.v65.i3.a6.2016.
GIW, 2023. Nadzór weterynaryjny. Warszawa: Główny Inspektorat Weterynarii. Available from: https://www.wetgiw.gov.pl/nadzor-weterynaryjny/asf-in-Poland [accessed: 5.05.2023].
Guberti, V., Khomenko, S., Masiulis, M., Kerba, S., 2022. African swine fever in wild boar – ecology and biosecurity. Rome: FAO; World Organization for Animal Health no. 28, 128 pp. DOI: https://doi.org/10.4060/cc0785.
Keuling, O., Lauterbach, K., Stier, N., Mechthild, R., 2010. Hunter feedback of individually marked wild boar Sus scrofa L.: Dispersal and efficiency of hunting in northeastern Germany. European Journal of Wildlife Research, 56: 159-167. DOI: https://doi.org/10.1007/s10344-009-0296-x.
Keuling, O., Stier, N., Roth, M., 2008. How does hunting influence activity and spatial usage in wild boar (Sus scrofaL.). European Journal of Wildlife Research, 54 (4): 729-737. DOI: https://doi.org/10.1007/s10344-008-0204-9.
Maillard, D., Fournier, P., 1995. Effect of shooting with hounds on home range size of wild boar (Sus scrofa L.) groups in Mediterranean habitat. IBEX Journal of Mountain Ecology, 3: 102-107.
Mur, L., Atzeni, M., Martinez-Lopez, B., Feliziani, F., Rolesu, S., Sánchez-Vízcaíno, J.M., 2016. Thirty-Five-Year presence of African Swine Fever in Sardinia: History, evolution and risk factors for disease maintenance. Transboundary Emerging Diseases, 63: 165-177. DOI: https://doi.org/10.1111/tbed.12264.
Mur, L., Boadella, M., Martýnez-Lopez, B., Gallardo, C., Gortazar, C., Sanchez-Vízciano, J.M., 2012. Monitoring of African Swine Fever in the wild boar population of the most recent endemic area of Spain. Transboundary Emerging Diseases, 59: 526-531. DOI: https://doi.org/10.1111/j.1865-1682.2012.01308.x.
Náhlik, A., Sandor, G., 2003. Birthrate and offspring survival in a free ranging wild boar (Sus scrofa) population. Wildlife Biology, 9: 37-42. DOI: https://doi.org/10.2981/wlb.2003.062.
Niemi, J.K., 2020. Impacts of African Swine Fever on pig meat markets in Europe. Frontiers in Veterinary Science, 7: 634. DOI: https://doi.org/10.3389/fvets.2020.00634.
Pejsak, Z., Truszczyński, M., 2016. Afrykański Pomór Świń (African Swine Fever). Puławy: Monografia PIWet-PIB, 197pp. DOI: https://doi.org/10.24425/nauka.2019.1261812016.
Pejsak, Z., Woźniakowski, G., 2021. Etyczne i ekonomiczne aspekty depopulacji dzików w zwalczaniu afrykańskiego pomoru świń (ASF). Życie Weterynaryjne, 96 (10): 703-708.
Penrith, M.L., Vosloo, W., 2009. Review of African Swine Fever: Transmission, spread and control. Journal of South African Veterinary Association, 80 (2): 58-62. DOI: https://doi.org/10.4102/jsava.v80i2.172.
Pitts, N., Whitnall, T., 2019. Impact of African Swine Fever on global markets. ABARES Agricultural commodities: September 2019. Available from: https://www.agriculture.gov.au/sites/default/files/sitecollectiondocuments/abares/agriculture-commodities/AgCommodities201909_AfricanSwineFever_v1.0.0.pdf [accessed: 13.05.2023].
Sánchez-Vízcaíno, J.M., Mur, L., Gomez-Villamandos, J.C., Carrasco, L., 2015. An update on the epidemiology and pathology of African Swine Fever. Journal of Comparable Pathology, 152 (1): 9-21. DOI: https://doi.org/10.1016/j.jcpa.2014.09.003.
Sauter-Louis, C., Conraths, F.J., Probst, C., Blohm, U., Schulz, K., Sehl, J., Fischer, M., Forth, J.H., Zani, L., Depner, K., Mettenleiter, T.C., Beer, M., Blome, S., 2021. African Swine Fever in wild boar in Europe – a review. Viruses, 13: 1717. DOI: https://doi.org/10.3390/v13091717.
Sodeikat, G., Pohlmeyer, K., 2002. Temporary home range modifications of wild boar family groups (Sus scrofa L.) caused by drive hunt in Lower Saxony (Germany). Zeitschrift für Jagdwissenschaft, 48 (suppl.): 161-166. DOI: https://doi.org/10.1007/BF02192404.
Sodeikat, G., Pohlmeyer, K., 2007. Impact of hunts on daytime resting site areas of wild boar family groups (Sus scrofaL.). Wildlife Biology in Practice, 3 (1): 28-38. DOI: https://doi.org/10.2461/wbp.2007.3.4.
TIBCO Software Inc., 2017. Statistica (data analysis software system), version 13. http://statistica.io.
Woodroffe, R., Thirgood, S., Rabinowitz, A., 2005. People and wildlife: Conflict or coexistence? Cambridge: Cambridge University Press, 497 pp. DOI: https://doi.org/10.1017/CBO9780511614774.026.
Woźniakowski, G., Kozak, E., Kowalczyk, A., Łyjak, M., Pomorska-Mól, M., Niemczuk, K., Pejsak, Z., 2016. Current status of African Swine Fever virus in a population of wild boar in eastern Poland (2014-2015). Archives of Virology, 161: 189-195. DOI: https://doi.org/10.1007/s00705-015-2650-5.