Effect of precise control of irrigation and substrate compaction on seedling growth and root distribution in Norway spruce
Wpływ precyzyjnej kontroli nawadniania i zagęszczenia podłoża na wzrost sadzonek i rozmieszczenie korzeni u świerka pospolitego
Sylwan 167 (12):838-853, 2023
DOI:
https://doi.org/10.26202/sylwan.2023085Available online: 2024-02-23
Open Access (CC-BY)
Dickson quality index • dry mass • Hiko container • Picea abies • sturdiness quotient
We analyzed the growth of 1−year−old Norway spruce seedlings in a container nursery with three experimental variants differing in substrate compaction and water supply during irrigation (moisture level control). The nursery material was produced in Hiko V−120SS containers. Each seedling’s height and root collar diameter (RCD) were measured. In addition, the dry mass of the shoots and needles was also determined. The lump of substrate was divided into three equal parts, and the dry mass of the root system was determined separately for three levels of cavity depth (upper, middle and lower). Seedlings grown in the variant with compacted substrate and precise control of substrate moisture level had the maximum height and RCD value. However, the average sturdiness quotient (SQ) of the seedlings in all variants was very high, explaining their low resistance to abiotic factors after planting. Similarly, the ratio of the above−ground part’s dry mass to the root system’s weight (S/R index) was very high, indicating the limited suitability of the seedlings for cultivation in all soil moisture conditions. Controlled irrigation for precise control of moisture level had no significant effect on the growth of seedlings. Similarly, the SQ and Dickson quality index values did not differ significantly. It is, therefore, possible to reduce the cost of seedling cultivation using a soil moisture control system that reduces the amount of water supplied to the production field without any adverse effects on the quality of the seedlings. The dry mass distribution in the root system was almost identical in all experimental variants. Most of the roots were found in the upper part of the root lump, i.e., to a depth of about 3.7 cm. On average, 60% of the total mass of the entire root system was located in this zone; hence, the container used to grow the spruce seedlings did not limit the growth of the root system.
Arvidsson, J., 1999. Nutrient uptake and growth of barley as affected by soil compaction. Plant and Soil, 208 (1): 9-19. DOI: https://doi.org/10.1023/A:1004484518652.
ASAE, 1998. Soil cone penetrometer S313.2. ASAE Standards, 45th ed. American Society of Agricultural Engineers, St. Joseph, Michigan.
Ash, K., 2016. Monitoring pathogens and preventative control programs at a nursery producing container-grown plants©. Acta Horticulturae, 1140: 157-164. DOI: https://doi.org/10.17660/ActaHortic.2016.1140.33.
Banach, J., Kempf, K., Skrzyszewska, K., Olejnik, K., 2021. The effect of starter fertilization on the growth of seedlings of European beech Fagus sylvatica L. Sylwan, 165 (8): 565-576. DOI: https://doi.org/10.26202/sylwan.2021074.
Banach, J., Małek, S., Kormanek, M., Durło, G., 2020. Growth of Fagus sylvatica L. and Picea abies (L.) Karst. seedlings grown in Hiko containers in the first year after planting. Sustainability, 12: 7155. DOI: https://doi.org/10.3390/su12177155.
Banach, J., Sabor, J., Kempf, M., Młynarczyk, A., Skrzyszewska, K., Hebda, A., 2015. Możliwości wykorzystania leśnego materiału rozmnożeniowego do przebudowy drzewostanów. In: S. Małek, ed. Ekologiczne i hodowlane uwarunkowania przebudowy drzewostanów świerkowych w Beskidzie Śląskim i Beskidzie Żywieckim. Kraków: Wydawnictwo Uniwersytetu Rolniczego w Krakowie, pp. 459-469.
Banach, J., Skrzyszewska, K., Skrzyszewski, J., 2017. Reforestation in Poland: History, current practice and future perspectives. Reforesta, 3: 185-195. DOI: https://doi.org/10.21750/REFOR.3.14.38.
Bernier, P.Y., Lamhamedi, M.S., Simpson, D.G., 1995. Shoot:root ratio is of limited use in evaluating the quality of container conifer stock. Tree Planters’ Notes, 46: 102-106.
Bernier, P.Y., Robitaille, G., Rioux, D., 2005. Estimating the mass density of fine roots of trees for minirhizotron-based estimates of productivity. Canadian Journal of Forest Research, 35: 1708-1713. DOI: https://doi.org/10.1139/X05-099.
Binotto, A.F., Dal’Col Lúcio, A., Lopes, S.J., 2010. Correlations between growth variables and the Dickson quality index in forest seedlings. Cerne, 16 (4): 457-464. DOI: https://doi.org/10.1590/S0104-77602010000400005.
Błońska, E., Kempf, M., Lasota, J., 2022. Woody debris as a substrate for the growth of a new generation of forest trees. Forest Ecology and Management, 525: 120566. DOI: https://doi.org/10.1016/j.foreco.2022.120566.
Brais, S., 2001. Persistence of soil compaction and effects on seedling growth in northwestern Quebec. Soil Science Society American Journal, 65 (4): 1263-1271. DOI: https://doi.org/10.2136/sssaj2001.6541263x.
Buraczyk, W., Szeligowski, H., 2008. Wpływ wilgotności i gatunku gleby na wzrost sadzonek sosny zwyczajnej (Pinus sylvestris L.) z zakrytym systemem korzeniowym. [The impact of soil’s textural group and moisture on the growth of Scots pine (Pinus sylvestris L.) seedlings with containerized root system]. Leśne Prace Badawcze, 69 (4): 291-297.
Carlson, W.C., 1986. Root system considerations in the quality of loblolly pine seedlings. Southern Journal of Applied Forestry, 10 (2): 87-92. DOI: https://doi.org/10.1093/sjaf/10.2.87.
del Campo, A.D., Navarro, R.M., Ceacero, C.J., 2010. Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain: An approach for establishing a quality standard. New Forests, 39: 19-37. DOI: https://doi.org/10.1007/s11056-009-9152-9.
Dickson, A., Leaf, A.L., Hosner, J.F., 1960. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forestry Chronicle, 36: 10-13. DOI: https://doi.org/10.5558/tfc36010-1.
Durło, B., Jagiełło-Leńczuk, K., Małek, S., Kormanek, M., Banach, J., 2018. Supplementary irrigation at container nursery. Leśne Prace Badawcze, 79 (1): 13-21. DOI: https://doi.org/10.2478/frp-2018-0002.
Fassnacht, K.S., Gower, S.T., 2007. Interrelationships among the edaphic and stand characteristics, leaf area index, and aboveground net primary production of upland forest ecosystems in north central Wisconsin. Canadian Journal of Forest Research, 27: 1058-1067. DOI: https://doi.org/10.1139/x97-058.
Fisher, P., 2009. Water treatment for pathogens and algae. Compilation of articles originally published as a twelve-part series in GMPro Magazine in 2008-2009. Gainesville: Water Education Alliance for Horticulture, University of Florida, 62 pp.
Fleming, R.L., Powers, R.F., Foster, N.W., Kranabetter, J.M., Scott, D.A, Ponder, F. Jr., Berch, S., Chapman, W.K., Kabzems, R.D., Ludovici, K.H., Morris, D.M., Page-Dumroese, D.S., Sanborn, P.T., Sanchez, F.G., Stone, D.M., Tiarks, A.E., 2006. Effects of organic matter removal, soil compaction, and vegetation control on 5-year seedling performance: A regional comparison of long-term soil productivity sites. Canadian Journal of Forest Research, 36 (3): 529-550. DOI: https://doi.org/10.1139/x05-271.
Flřistad, I.S., Eldhuset, T.D., 2017. Effect of photoperiod and fertilization on shoot and fine root growth in Picea abies seedlings. Silva Fennica, 51 (1): 1704. DOI: https://doi.org/10.14214/sf.1704.
Folk, R.S., Grossnickle, S.C., 1997. Determining field performance potential with the use of limiting environmental conditions. New Forests, 13: 121-138. DOI: https://doi.org/10.1023/A:1006514805052.
Grossnickle, S.C., 2005. Importance of root growth in overcoming planting stress. New Forests, 30: 273-294. DOI: https://doi.org/10.1007/s11056-004-8303-2.
Grossnickle, S.C., 2012. Why seedlings survive: influence of plant attributes. New Forests, 43 (5-6): 711-738. DOI: https://doi.org/10.1007/s11056-012-9336-6.
Haase, D.L., 2007. Morphological and physiological evaluations of seedling quality. USDA Forest Service Proceedings RMRS-P-50, pp. 3-8.
Haase, D.L., 2008. Understanding forest seedling quality: measurements and interpretation. Tree Planters’ Notes, 52 (2): 24-30.
Haase, D.L., Rose, R., 1993. Soil moisture stress induces transplant shock in stored and unstored 2+0 Douglas-fir seedlings of varying root volumes. Forest Science, 39: 275-294. DOI: https://doi.org/10.1093/forestscience/39.2.275.
Hobbs, S.D., 1984. The influence of species and stocktype selection on stand establishment: an ecophysiological perspective. In: M.L. Duryea, G.H. Brown, eds. Seedling physiology and reforestation success. Proceedings of the physiology working group technical session. Dordrecht-Boston-Lancaster: Kluwer Academic Publishers Group, pp. 180-224.
Ivetić, V., Davorija, Z., Vilotić, D., 2013. Relationship between morphological and physiological attributes of hop hornbeam seedlings. Bulletin of the Faculty of Forestry, 108: 39-50. DOI: https://doi.org/10.2298/GSF1308039I.
Ivetić, V., Grossnickle, S., Škorić, M., 2016. Forecasting the field performance of Austrian pine seedlings using morphological attributes. iForest, 10: 99-107. DOI: https://doi.org/10.3832/ifor1722-009.
Ivetić, V., Škorić, M., 2013. The impact of seeds provenance and nursery production method on Austrian pine (Pinus nigra Arn.) seedlings quality. Annals of Forest Research, 56 (2): 297-305. DOI: https://doi.org/10.15287/afr.2013.29.
Jäärats, A., Tullus, A. and Seemen, H., 2016. Growth and survival of bareroot and container plants of Pinus sylvestris and Picea abies during eight years in hemiboreal Estonia. Baltic Forestry, 22 (2): 365-374.
Johnson, J.D., Cline, M.L., 1991. Seedling quality of southern pines. In: M.L. Duryea, P.M. Dougherty, ed. Forest Regeneration Manual. Dordrecht: Kluwer Academic Publishers, pp. 143-159. DOI: https://doi.org/10.1007/978-94-011-3800-0.
Jurásek, A., Leugner, J., Martincová, J., 2009. Effect of initial height of seedlings on the growth of planting material of Norway spruce (Picea abies [L.] Karst.) in mountain conditions. Journal of Forest Science, 55 (3): 112-118. DOI: https://doi.org/10.17221/97/2008-JFS.
Kahlon, M.S., Fausey, N., Lal, R., 2012. Tillage effects on corn soil-plant -water continuum in alfisols of Southern Ohio. Journal of Agricultural Science, 4 (10): 35-47. DOI: https://doi.org/10.5539/jas.v4n10p35.
Kormanek, M., Banach, J., 2011. Influence in soil compaction on the growth of pedunculate oak seedlings bred in laboratory condition. In: J. Walczyk, ed. Utilization of agricultural and forest machinery. Prace Komisji Nauk Rolniczych, Leśnych i Weterynaryjnych. Polska Akademia Umiejętności, 15: 109-118.
Kormanek, M., Banach, J., Ryba, M., 2013. Influence of substrate compaction in nursery containers on the growth of Scots pine (Pinus sylvestris L.) seedlings. Forest Research Papers, 74 (4): 307-314. DOI: https://doi.org/10.2478/frp-2013-0029.
Kormanek, M., Banach, J., Sowa, P., 2015a. Effect of soil bulk density on forest tree seedlings. International Agrophysics, 29: 67-74. DOI: https://doi.org/10.1515/intag-2015-0003.
Kormanek, M., Durło, G., Jagiełło-Leńczuk, K., Małek, S., Banach, J., Dudek, K., Barszcz, J., 2015b. Retention properties of peat substrate in Hiko V-120ss and V-265 nursery containers. In: Utilization of agricultural and forest machinery in research and teaching. Prace Komisji Nauk Rolniczych, Leśnych i Weterynaryjnych. Polska Akademia Umiejętności, 22 (5): 21-30.
Kormanek, M., Małek, S., Banach, J., Durło, G., 2023. Effect of changing substrate density and water application method on substrate physical properties and container-grown seedling growth. Forests, 14: 1490. DOI: https://doi.org/10.3390/f14071490.
Kormanek, M., Małek, S., Banach, J., Jagiełło-Leńczuk, K., Dudek, K., 2021. Seasonal changes of perlite-peat substrate properties in seedlings grown in different sized container trays. New Forests, 52: 271-283. DOI: https://doi.org/10.1007/s11056-020-09793-3.
Kormanek M., Małek, S., Durło, G., Banach, J., 2018. Sprinkler system, especially for seedlings in forest and horticultural nurseries. Application date: 20.06.2017; application number: P.421958; MKP classification: A01G25/02, A01G25/16; patent no: Pat.232534; patent date: 18.10.2018.
Kupka, I., 2007. The root-plant ratio changes in the first growing periods of wild cherry (Prunus avium L.) plantations. Journal of Forest Science, 53 (3): 113-118. DOI: https://doi.org/10.17221/2147-JFS.
Labelle, E.R., Kammermeier, M., 2019. Above- and belowground growth response of Picea abies seedlings exposed to varying levels of soil relative bulk density. European Journal of Forest Research, 138: 705-722. DOI: https://doi.org/10.1007/s10342-019-01201-6.
Langerud, B.R., Sandvik, M., 1991. Transpiration of containerized Picea abies seedlings grown with different irrigation regimes. Scandinavian Journal of Forest Research, 6 (1-4): 79-90. DOI: https://doi.org/10.1080/02827589109382651.
Mańas, P., Castro, E., Heras, J.D.L., 2009. Quality of maritime pine (P. pinaster Ait.) seedlings using waste materials as nursery growing media. New Forests, 37 (3): 295-311. DOI: https://doi.org/10.1007/s11056-008-9125-4.
Maupin, C., Struve, D.K., 1997. Red oak transplanting to different bulk density soils have similar water use characteristics. Journal of Arboriculture, 23: 233-238. DOI: https://doi.org/10.48044/jauf.1997.036.
Miransari, M., Bahrami, H.A., Rejali, F., Malakouti, M.J., 2009. Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays. L.). Soil and Tillage Research, 103 (2): 282-290. DOI: https://doi.org/10.1016/j.still.2008.10.015.
Madugundu, R., Nizalapur, V., Jha, C.S., 2008. Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India. International Journal of Applied Earth Observation and Geoinformation, 10: 211-219. DOI: https://doi.org/10.1016/j.jag.2007.11.004.
Olivo, V.B., Buduba, C.G., 2006. Influence of six substrates in Pinus ponderosa grown in containers under greenhouse conditions. Bosque, 27 (3): 267-271. DOI: https://doi.org/10.4067/S0717-92002006000300007.
Pająk, K., Kormanek, M., Małek, S., Banach, J., 2022b. Effect of peat-perlite substrate compaction in Hiko V265 trays on the growth of Fagus sylvatica L. seedlings. Sustainability, 14: 4585. DOI: https://doi.org/10.3390/su14084585.
Pająk, K., Małek, S., Kormanek, M., Jasik, M., 2022a. The effect of peat substrate compaction on the macronutrient content of Scots pine Pinus sylvestris L. container seedlings. Sylwan, 166 (8): 537-550. DOI: https://doi.org/10.26202/sylwan.2022062.
Paterson, J., 1996. Growing environment and container type influence field performance of black spruce container stock. New Forests, 13: 325-335. DOI: https://doi.org/10.1023/A:1006598611412.
Puhe, J., 2003. Growth and development of the root system of Norway spruce (Picea abies) in forest stands – A review. Forest Ecology and Management, 175 (1-3): 253-273. DOI: https://doi.org/10.1016/S0378-1127(02)00134-2.
Racey, G.D., Glerum, C., Hutchison, R.E., 1983. The practicality of top-root ratio in nursery stock characterization. Forestry Chronicle, 59 (5): 240-243. DOI: https://doi.org/10.5558/tfc59240-5.
Razaq, M., Zhang, P., Shen, H.I., Salahuddin, 2017. Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE, 12 (2): e0171321. DOI: https://doi.org/10.1371/journal.pone.0171321.
Riikonen, J., Kettunen, N., Gritsevich, M., Hakala, T., Särkkä, L., Tahvonen, R., 2016. Growth and development of Norway spruce and Scots pine seedlings under different light spectra. Environmental and Experimental Botany, 121: 112-120. DOI: https://doi.org/10.1016/j.envexpbot.2015.06.006.
Roller, K.J., 1977. Suggested minimum standards for containerized seedlings in Nova Scotia. Canadian Forestry Service, Department of Fisheries and the Environment, New Brunswick, Information Report M-X-69.
Rose, R., Atkinson, M., Gleason, J., Sabin, T., 1991. Root volume as a grading criterion to improve field performance of Douglas-fir seedlings. New Forests, 5: 195-209. DOI: https://doi.org/10.1007/BF00028111.
PN-R-67025, 1999. Materiał sadzeniowy – Sadzonki drzew i krzewów do upraw leśnych i na plantacje. Warszawa: Polski Komitet Normalizacyjny.
Salonius, P., Beaton, K., Roze, B., 2000. Effects of cell size and spacing on root density and field performance of container-reared black spruce. Canadian Forest Service – Atlantic Forestry Centre. Information Report M-X-208E.
Skrzyszewski, J., 1994. Analiza porównawcza nadziemnej i podziemnej części drzewa na przykładzie świerka i modrzewia. (Comparative analysis of above-ground and underground part of the tree on the example of spruce and larch). Sylwan, 138 (9): 71-80.
South, D.B., 2000. Increasing pine survival and early growth by planting ‘morphologically improved’ seedlings. FR Center, Forestry and Wildlife series.
Staszel-Szlachta, K., Lasota, J., Kempf, M., Błońska, E., 2022. Effect of nitrogen deposition on root systems and exudates of seedlings of beech Fagus sylvatica L. in a temperate climate. Sylwan, 166 (12): 796-808. DOI: https://doi.org/10.26202/sylwan.2023004.
StatSoft Inc. 2014. STATISTICA (data analysis software system), version 12. Available from: www.statsoft.com.
Sutherland, J.R., 1991. Management of pathogens in seed orchards and nurseries. The Forestry Chronicle, 67 (5): 481-485. DOI: https://doi.org/10.5558/tfc67481-5.
Szabla, K., Pabian, R., 2009. Szkółkarstwo kontenerowe. Nowe technologie i techniki w szkółkarstwie kontenerowym. Warszawa: Centrum Informacyjne Lasów Państwowych, 253 pp.
Thompson, B.E., 1985. Seedling morphological evaluation – what you can tell by looking. In: M.L. Durvea, ed. Proceedings: Evaluating seedling quality: principles, procedures, and predictive abilities of major tests. Workshop held October 16-18, 1984. Corvallis: Forest Research Laboratory, Oregon State University, pp. 59-71.
Tsakaldimi, M., Zagas, T., Tsitsoni, T., Ganatsas, P., 2005. Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant and Soil, 278: 85-93. DOI: https://doi.org/10.1007/s11104-005-2580-1.
Vaario, L.M., Tervonen, A., Haukioja, K., Haukioja, M., Pennanen, T., Timonen, S., 2009. The effect of nursery substrate and fertilization on the growth and ectomycorrhizal status of containerized and outplanted seedlings of Picea abies. Canadian Journal of Forest Research, 39: 64-75. DOI: https://doi.org/10.1139/X08-156.
Zahreddine, H.G., Struve, D.K., Quigley, M., 2004. Growing Pinus nigra seedlings in Spinout-treated containers reduces root malformation in increases regrowth potential. Journal of Environmental Horticulture, 22: 176-182. DOI: https://doi.org/10.24266/0738-2898-22.4.176.
Zida, D., Tigabu, M., Sawadogo, L., Odén, P.C., 2008. Initial seedling morphological characteristics and field performance of two Sudanian savannah species in relation to nursery production period and watering regimes. Forest Ecology and Management, 255: 2151-2162. DOI: https://doi.org/10.1016/j.foreco.2007.12.029.