Article

Assessment of long−term canopy height changes across the Białowieża Primeval Forest using historical stereoscopic images and aerial laser scanning data
Ocena długoterminowych zmian wysokości koron drzew w Puszczy Białowieskiej z wykorzystaniem historycznych obrazów stereometrycznych i danych lotniczego skaningu laserowego
JAROSŁAW JANUS, PIOTR BOŻEK, JAROSŁAW TASZAKOWSKI, ARKADIUSZ DOROŻ
Sylwan 167 (7):397-414, 2023
DOI: https://doi.org/10.26202/sylwan.2023056
Available online: 2023-11-14
Open Access (CC-BY)
ALS • Białowieża Forest • historical photographs • LiDAR • natural forests • point clouds • protected areas • stereoscopic image processing

Abstract
Both natural and man−made forest areas are subject to many changes, the observation of which is necessary to understand their causes, monitor current processes and precisely forecast further changes. Protected areas with preserved natural forests play a special role in research on long−term changes in forest cover height. The presented research presents the processes of changes in forest cover height over the last 30 years in the area of the Białowieża Primeval Forest, the last of the large, natural forest complexes that once covered the lowland part of Europe. For areas with different degrees of protection, data was obtained representing the spatial arrangement of tree crowns in the period between 1982 and 2012. The historical status was determined on the basis of point clouds obtained by processing panchromatic stereoscopic aerial photos. These data were compared with contemporary datasets resulting from airborne laser scanning measurements. This allowed for a precise definition of the range of changes, their dynamics and the nature of these changes in parts of the forest with different conservation regimes. The research demonstrated the usefulness of the proposed method for determining long−term changes affecting forested areas, including not only the range, but also the height structure of vegetation. This enables the identification of events affecting the structure of the forest, both due to normal forest management and to natural causes, along with the possibility of determining the location and approximate determination of the occurrence of a given event in time.

Literature
Akay, A.E., Oguz, H., Karas, I. R., Aruga, K., 2009. Using LiDAR technology in forestry activities. Environmental Monitoring and Assessment, 151: 117-125. DOI: https://doi.org/10.1007/s10661-008-0254-1.
Balenović, I., Seletković, A., Pernar, R., Jazbec, A., 2015. Estimation of the mean tree height of forest stands by photogrammetric measurement using digital aerial images of high spatial resolution. Annals of Forest Research, 58 (1): 125-143. DOI: https://doi.org/10.15287/afr.2015.300.
Będkowski, K., 2004. Skanowanie laserowe i jego zastosowanie w leśnictwie (Laser scanning and its application in forestry). Roczniki Geomatyki, 4: 33-40.
Będkowski, K., 2005. Fotogrametryczna metoda oceny stanu i zmian wysokościowej struktury warstwy koron w drzewostanach. (Photogrammetric method for the assessment of the forest canopy vertical structure condition and change). Rozprawy i Monografie Naukowe. Warszawa: Wydawnictwo SGGW, 208 pp.
Birdseye, C.H., 1940. Stereoscopic phototopographic mapping. Annals of the Association of American Geographers, 30 (1): 1-24. DOI: https://doi.org/10.1080/00045604009357193.
Bobiec, A., 2002. Living stands and dead wood in the Białowieża forest: Suggestions for restoration management. Forest Ecology and Management, 165 (1-3): 125-140. DOI: https://doi.org/10.1016/S0378-1127(01)00655-7.
Bobiec, A., 2007. The influence of gaps on tree regeneration: A case study of the mixed lime-hornbeam (Tilio-Carpinetum Tracz. 1962) communities in the Białowieża Primeval Forest. Polish Journal of Ecology, 55 (3): 441-455.
Bobiec, A., 2012. Białowieża Primeval Forest as a remnant of culturally modified ancient forest. European Journal of Forest Research, 131 (5): 1269-1285. DOI: https://doi.org/10.1007/s10342-012-0597-6.
Bohlin, I., Maltamo, M., Hedenĺs, H., Lämĺs, T., Dahlgren, J., Mehtätalo, L., 2021. Predicting bilberry and cowberry yields using airborne laser scanning and other auxiliary data combined with National Forest Inventory field plot data. Forest Ecology and Management, 502: 119737. DOI: https://doi.org/10.1016/j.foreco.2021.119737.
Bour, B., Danneyrolles, V., Boucher, Y., Fournier, R.A., Guindon, L., 2021. Modeling post-logging height growth of black spruce-dominated boreal forests by combining airborne LiDAR and time since harvest maps. Forest Ecology and Management, 502: 119697. DOI: https://doi.org/10.1016/j.foreco.2021.119697.
Bożek, P., Janus, J., Mitka, B., 2019. Analysis of changes in forest structure using point clouds from historical aerial photographs. Remote Sensing, 11 (19): 2259. DOI: https://doi.org/10.3390/rs11192259.
Brzeziecki, B., Woods, K., Bolibok, L., Zajączkowski, J., Drozdowski, S., Bielak, K., Żybura, H., 2020. Over 80 years without major disturbance, late-successional Białowieża woodlands exhibit complex dynamism, with coherent compositional shifts towards true old-growth conditions. Journal of Ecology, 108 (3): 1138-1154. DOI: https://doi.org/10.1111/1365-2745.13367.
Cegielska, K., Noszczyk, T., Kukulska, A., Szylar, M., Hernik, J., Dixon-Gough, R., Jombach, S., Valanszki, I., Filepné Kovács, K., 2018. Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy, 78: 1-18. DOI: https://doi.org/10.1016/j.landusepol.2018.06.017.
Cholewińska, O., Adamowski, W., Jaroszewicz, B., 2020. Homogenization of temperate mixed deciduous forests in Białowieża forest: Similar communities are becoming more similar. Forests, 11: 545. DOI: https://doi.org/10.3390/F11050545.
Cousins, S.A.O., 2001. Analysis of land-cover transitions based on 17th and 18th century cadastral maps and aerial photographs. Landscape Ecology, 16: 41-54. DOI: https://doi.org/10.1023/A:1008108704358.
Czerepko, J., Gawryś, R., Mańk, K., Janek, M., Tabor, J., Skalski, Ł., 2021. The influence of the forest management in the Białowieża forest on the species structure of the forest community. Forest Ecology and Management, 496: 119363. DOI: https://doi.org/10.1016/j.foreco.2021.119363.
Czeszczewik, D., Walankiewicz, W., 2016. Ecology and biology of birds in the Białowieża Forest: A 40-year perspective. Forest Research Papers, 77 (4): 332-340. DOI: https://doi.org/10.1515/frp-2016-0034.
Danneyrolles, V., Valeria, O., Djerboua, I., Gauthier, S., Bergeron, Y., 2020. How initial forest cover, site characteristics and fire severity drive the dynamics of the southern boreal forest. Remote Sensing, 12 (23): 3957. DOI: https://doi.org/10.3390/rs12233957.
Farhadur Rahman, M., Onoda, Y., Kitajima, K., 2022. Forest canopy height variation in relation to topography and forest types in central Japan with LiDAR. Forest Ecology and Management, 503: 119792. DOI: https://doi.org/10.1016/j.foreco.2021.119792.
Fernández-Álvarez, M., Armesto, J., Picos, J., 2019. LiDAR-based wildfire prevention in WUI: The automatic detection, measurement and evaluation of forest fuels. Forests, 10: 148. DOI: https://doi.org/10.3390/f10020148.
Fujita, T., Itaya, A., Miura, M., Manabe, T., Yamamoto, S.I., 2003. Long-term canopy dynamics analysed by aerial photographs in a temperate old-growth evergreen broad-leaved forest. Journal of Ecology, 91 (4): 686-693. DOI: https://doi.org/10.1046/j.1365-2745.2003.00796.x.
Garzon-Lopez, C.X., Bohlman, S.A., Olff, H., Jansen, P.A., 2013. Mapping tropical forest trees using high-resolution aerial digital photographs. Biotropica, 45 (3): 308-316. DOI: https://doi.org/10.1111/btp.12009.
Gaston, K.J., Jackson, S.F., Nagy, A., Cantú-Salazar, L., Johnson, M., 2008. Protected areas in Europe: Principle and practice. Annals of the New York Academy of Sciences, 1134 (1): 97-119. DOI: https://doi.org/10.1196/annals.1439.006.
Harper, G.J., Steininger, M.K., Tucker, C.J., Juhn, D., Hawkins, F., 2007. Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation, 34 (4): 325-333. DOI: https://doi.org/10.1017/S0376892907004262.
Hastings, J.H., Ollinger, S.V., Ouimette, A.P., Sanders-DeMott, R., Palace, M.W., Ducey, M.J., Sullivan, F.B., Basler, D., Orwig, D.A., 2020. Tree species traits determine the success of LiDAR-based crown mapping in a mixed temperate forest. Remote Sensing, 12: 309. DOI: https://doi.org/10.3390/rs12020309.
Hickler, T., Vohland, K., Feehan, J., Miller, P.A., Smith, B., Costa, L., Giesecke, T., Fronzek, S., Carter, T.R., Cramer, W., Kühn, I., Sykes, M.T., 2012. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography, 21 (1): 50-63. DOI: https://doi.org/10.1111/j.1466-8238.2010.00613.x.
Ishiguro, S., Yamano, H., Oguma, H., 2016. Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion-multi-view stereo technology. Geomorphology, 268: 64-71. DOI: https://doi.org/10.1016/j.geomorph.2016.05.029.
Janus, J., Bozek, P., 2019. Land abandonment in Poland after the collapse of socialism: Over a quarter of a century of increasing tree cover on agricultural land. Ecological Engineering, 138: 106-117. DOI: https://doi.org/10.1016/j.ecoleng.2019.06.017.
Kaplan, J.O., Krumhardt, K.M., Zimmermann, N., 2009. The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews, 28 (27-28): 3016-3034. DOI: https://doi.org/10.1016/j.quascirev.2009.09.028.
Koch, B., Heyder, U., Weinacker, H., 2006. Detection of individual tree crowns in airborne lidar data. Photogrammetric Engineering and Remote Sensing, 4: 357-363. DOI: https://doi.org/10.14358/PERS.72.4.357.
Kolecka, N., Kozak, J., Kaim, D., Dobosz, M., Ostafin, K., Ostapowicz, K., Price, B., 2017. Understanding farmland abandonment in the Polish Carpathians. Applied Geography, 88: 62-72. DOI: https://doi.org/10.1016/j.apgeog.2017.09.002.
Kolendo, Ł., Ksepko, M., 2019. Selection of optimal tree top detection parameters in a context of effective forest management. Ekonomia i Środowisko, 1 (68): 67-85. DOI: https://doi.org/10.34659/pjxd-gh10.
Korpela, I., Anttila, P., 2004. Appraisal of the mean height of trees by means of image matching of digitised aerial photographs. Photogrammetric Journal of Finland, 19: 23-36.
Kujawa, A., Orczewska, A., Falkowski, M., Blicharska, M., Bohdan, A., Buchholz, L., Chylarecki, P., Gutowski, J.M., Latałowa, M., Mysłajek, R.W., Nowak, S., Walankiewicz, W., Zalewska, A., 2016. The Białowieża Forest – a UNESCO Natural Heritage Site – protection priorities. Forest Research Papers, 77: 302-323. DOI: https://doi.org/10.1515/frp-2016-0032.
Kurowska, K., Kryszk, H., Marks-Bielska, R., Mika, M., Leń, P., 2020. Conversion of agricultural and forest land to other purposes in the context of land protection: Evidence from Polish experience. Land Use Policy, 95: 104614. DOI: https://doi.org/10.1016/j.landusepol.2020.104614.
van Leeuwen, M., Nieuwenhuis, M., 2010. Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129: 749-770. DOI: https://doi.org/10.1007/s10342-010-0381-4.
Lenoir, J., Gril, E., Durrieu, S., Horen, H., Laslier, M., Lembrechts, J.J., Decocq, G., 2022. Unveil the unseen: Using LiDAR to capture time-lag dynamics in the herbaceous layer of European temperate forests. Journal of Ecology, 110 (2): 282-300. DOI: https://doi.org/10.1111/1365-2745.13837.
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Machetti, M., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259 (4): 698-709. DOI: https://doi.org/10.1016/j.foreco.2009.09.023.
Liu, Z., Zhang, T., Yu, J., Zhou, L., 2019. Determinants of rural households’ afforestation program participation: Evidence from China’s Ningxia and Sichuan provinces. Global Ecology and Conservation, 17: e00533. DOI: https://doi.org/10.1016/j.gecco.2019.e00533.
Maiorano, L., Amori, G., Montemaggiori, A., Rondinini, C., Santini, L., Saura, S., Boitani, L., 2015. On how much biodiversity is covered in Europe by national protected areas and by the Natura 2000 network: Insights from terrestrial vertebrates. Conservation Biology, 29 (4): 986-995. DOI: https://doi.org/10.1111/cobi.12535.
Marín, A.I., Abdul Malak, D., Bastrup-Birk, A., Chirici, G., Barbati, A., Kleeschulte, S., 2021. Mapping forest condition in Europe: Methodological developments in support to forest biodiversity assessments. Ecological Indicators, 128. 107839. DOI: https://doi.org/10.1016/j.ecolind.2021.107839.
Martinez del Castillo, E., García-Martin, A., Longares Aladrén, L.A., de Luis, M., 2015. Evaluation of forest cover change using remote sensing techniques and landscape metrics in Moncayo Natural Park (Spain). Applied Geography, 62: 247-255. DOI: https://doi.org/10.1016/j.apgeog.2015.05.002.
McCarley, T.R., Kolden, C.A., Vaillant, N.M., Hudak, A.T., Smith, A.M.S., Wing, B.M., Kellogg, B.S., Kreitler, J., 2017. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure. Remote Sensing of Environment, 191: 419-432. DOI: https://doi.org/10.1016/j.rse.2016.12.022.
Meyfroidt, P., Lambin, E.F., 2011. Global forest transition: Prospects for an end to deforestation. Annual Review of Environment and Resources, 36: 343-371. DOI: https://doi.org/10.1146/annurev-environ-090710-143732.
Mitchell, F.J.G., Cole, E., 1998. Reconstruction of long-term successional dynamics of temperate woodland in Bialo-wieża Forest, Poland. Journal of Ecology, 86 (6): 1042-1059. DOI: https://doi.org/10.1046/j.1365-2745.1998.00323.x.
Mozgawa, J., 1977. Teledetekcyjna metoda badania obszarów leśnych. (Remote sensing for studying forest regions). Sylwan, 121 (5): 33-40.
Mozgawa, J., 1980. Lotnicze fotografie wielospektralne jako źródło informacji o obszarach leśnych. (Multispectral air photography as a source of information about forest regions). Sylwan, 124 (11): 11-20.
Mozgawa, J., 1985. Metodologiczne podstawy wykorzystania fotointerpretacji do modelowania systemowego w drzewo-stanach. Rozprawy naukowe i monografie. Warszawa: Wydawnictwo SGGW-AR, 67 pp.
Mlambo, R., Woodhouse, I.H., Gerard, F., Anderson, K., 2017. Structure from motion (SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests, 8 (3): 68. DOI: https://doi.org/10.3390/f8030068.
Muchová, Z., Tárníková, M., 2018. Land cover change and its influence on the assessment of the ecological stability. Applied Ecology and Environmental Research, 16 (3): 2169-2182. DOI: https://doi.org/10.15666/aeer/1603_21692182.
Munteanu, C., Kuemmerle, T., Boltiziar, M., Butsic, V., Gimmi, U., Halada L, Kaim, Kiraly, G., Konkoly-Gyuró, E., Kozak, J., Lieskovský, J., Moises, M., Müller, D., Ostafin, K., Ostapowicz, K., Shandra, O., Štych, P., Walker, S., Radeloff, V.C., 2014. Forest and agricultural land change in the Carpathian region – A meta-analysis of long-term patterns and drivers of change. Land Use Policy, 38: 685-697. DOI: https://doi.org/10.1016/j.landusepol.2014.01.012.
Niklasson, M., Zin, E., Zielonka, T., Feijen, M., Korczyk, A.F., Churski, M., Brzeziecki, B., 2010. A 350-year tree-ring fire record from Białowieża Primeval Forest, Poland: Implications for Central European lowland fire history. Journal of Ecology, 98 (6): 1319-1329. DOI: https://doi.org/10.1111/j.1365-2745.2010.01710.x.
Noszczyk, T., Rutkowska, A., Hernik, J., 2020. Exploring the land use changes in Eastern Poland: statistics-based modeling. Human and Ecological Risk Assessment: An International Journal, 26 (1): 255-282. DOI: https://doi.org/10.1080/10807039.2018.1506254.
OECD, 2011 The economic significance of natural resources: key points for reformers in Eastern Europe, Caucasus and Central Asia. Paris: OECD Publishing, 42 pp.
Ota, T., Ogawa, M., Shimizu, K., Kajisa, T., Mizoue, N., Yoshida, S., Ket, N., 2015. Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest. Forests, 6: 3882-3898. DOI: https://doi.org/10.3390/f6113882.
Řrka, H.O., Jutras-Perreault, M.C., Nćsset, E., Gobakken, T., 2022. A framework for a forest ecological base map – An example from Norway. Ecological Indicators, 136: 108636. DOI: https://doi.org/10.1016/j.ecolind.2022.108636.
Parviainen, J., 2005. Virgin and natural forests in the temperate zone of Europe. Forest Snow and Landscape Research, 79 (1-2): 9-18.
Piekarski, E., 1972. Czynniki wpływające na dokładność określania wysokości drzew stereoskopowymi przyrządami fotogrametrycznymi. Zeszyty Naukowe SGGW, Leśnictwo, 17, pp. 135-153.
Piekarski, E., 1974. Niektóre fotogrametryczne metody określania wysokości drzew i drzewostanów. (Some photogrammetric techniques of the determination of tree and stand height). Sylwan, 118 (8): 46-53.
Piekarski, E., Będkowski, K., 1991. Fotografia lotnicza jako źródło informacji o lesie – fotogrametryczna taksacja drzewostanów i inwentaryzacja zapasu. In: Metody oceny stanu i zmian zasobów leśnych. Warszawa: Wydawnictwo SGGW-AR, pp. 105-118.
Pödör, Z., Manninger, M., Jereb, L., 2014. Application of sigmoid models for growth investigations of forest trees. In: T. Do, H.A.L. Thi, N.T. Nguyen, eds. Advanced computational methods for knowledge engineering, pp. 353-364. DOI: https://doi.org/10.1007/978-3-319-06569-4_26.
Rodrigues, A.S.L., Andelman, S.J., Bakan, M.I., Boitani, L., Brooks, T.M., Cowling, R.M., Yan, X., 2004. Effectiveness of the global protected area network in representing species diversity. Nature, 428: 640-643. DOI: https://doi.org/10.1038/nature02422.
Rodríguez-Vivancos, A., Manzanera, J.A., Martín-Fernández, S., García-Cimarras, A., García-Abril, A., 2022. Analysis of structure from motion and airborne laser scanning features for the evaluation of forest structure. European Journal of Forest Research, 141 (3): 447-465. DOI: https://doi.org/10.1007/s10342-022-01447-7.
Prada, M., Canga, E., Majada, J., Martínez-Alonso, C., 2022. Canopy characterization of sweet chestnut coppice in the north of Spain from lidar data. European Journal of Forest Research, 141 (2): 267-279. DOI: https://doi.org/10.1007/s10342-021-01436-2.
Sabatini, F.M., Bluhm, H., Kun, Z., Aksenov, D., Atauri, J.A., Buchwald, E., Kuemmerle, T., 2021. European primary forest database v2.0. Scientific Data, 8 (1): 220. DOI: https://doi.org/10.1038/s41597-021-00988-7.
Sabatini, F.M., Burrascano, S., Keeton, W.S., Levers, C., Lindner, M., Pötzschner, F., Kuemmerle, T., 2018. Where are Europe’s last primary forests? Diversity and Distributions, 24 (10): 1426-1439. DOI: https://doi.org/10.1111/ddi.12778.
Shi, Y., Wang, T., Skidmore, A.K., Heurich, M., 2018. Important LiDAR metrics for discriminating forest tree species in Central Europe. ISPRS Journal of Photogrammetry and Remote Sensing, 137: 163-174. DOI: https://doi.org/10.1016/j.isprsjprs.2018.02.002.
Stepper, C., Straub, C., Pretzsch, H., 2014. Assessing height changes in a highly structured forest using regularly acquired aerial image data. Forestry, 88 (3). 304-316. DOI: https://doi.org/10.1093/forestry/cpu050.
Stereńczak, K., 2014. Factors influencing individual tree crowns detection based on airborne laser scanning data. Forest Research Papers, 74 (4): 323-333. DOI: https://doi.org/10.2478/frp-2013-0031.
Stereńczak, K., 2009. Single tree detection based on airborne LiDAR (ALS) data. Annals of Geomatics, 7 (2): 121-126.
Stereńczak, K., ed. 2022. Stan obecny Puszczy Białowieskiej na podstawie wyników projektu LIFE+ForBioSensing. (The current state of Białowieża Forest based on the results of the LIFE+ ForBioSensing project). Sękocin Stary: Instytut Badawczy Leśnictwa, 200 pp.
St-Onge, B., Audet, F.A., Bégin, J., 2015. Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds. Forests, 6 (11): 3899-3922. DOI: https://doi.org/10.3390/f6113899.
Sverdrup-Thygeson, A., Řrka, H.O., Gobakken, T., Nćsset, E., 2016. Can airborne laser scanning assist in mapping and monitoring natural forests? Forest Ecology and Management, 369: 116-125. DOI: https://doi.org/10.1016/j.foreco.2016.03.035.
Tomiałojć, L., Wesołowski, T., 2004. Diversity of the Białowieża forest avifauna in space and time. Journal of Ornithology, 145: 81-92. DOI: https://doi.org/10.1007/s10336-003-0017-2.
Torresan, C., Berton, A., Carotenuto, F., Di Gennaro, S.F., Gioli, B., Matese, A., Wallace, L., 2017. Forestry applications of UAVs in Europe: a review. International Journal of Remote Sensing, 38 (8-10): 2427-2447. DOI: https://doi.org/10.1080/01431161.2016.1252477.
Varga, K., Szabó, S., Szabó, G., Dévai, G., Tóthmérész, B., 2015. Improved land cover mapping using aerial photographs and satellite images. Open Geosciences, 7 (1): 20150002. DOI: https://doi.org/10.1515/geo-2015-0002.
Veen, P., Fanta, J., Raev, I., Biriş, I.A., de Smidt, J., Maes, B., 2010. Virgin forests in Romania and Bulgaria: Results of two national inventory projects and their implications for protection. Biodiversity and Conservation, 19: 1805-1819. DOI: https://doi.org/10.1007/s10531-010-9804-2.
Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300-314. DOI: https://doi.org/10.1016/j.geomorph.2012.08.021.
Wężyk, P., Szostak, M., Tompalski, P., 2013. Use of airborne laser scanning data for a revision and update of a digital forest map and its descriptive database: A case study from the Tatra National Park. In: J. Kozak, K. Ostapowicz, A. Bytnerowicz, B. Wyżga, eds. The Carpathians: Integrating nature and society towards sustainability. Environmental Science and Engineering, Berlin, Heidelberg: Springer, pp. 615-627. DOI: https://doi.org/10.1007/978-3-642-12725-0_43.
Wężyk, P., Tompalski, P., de Kok, R., Szostak, M., Kukawski, M., 2010. Metoda szacowania liczby drzew w drzewostanie z wykorzystaniem danych ALS i ortoobrazów (Method of the tree number estimation in the pine stand using ALS data and true orthoimages). Sylwan, 154 (11): 773-782. DOI: https://doi.org/10.26202/sylwan.2009230.
Winterbotham, H.S.L., Hugershoff, P., Cranz, P., 1921. Grundlagen der Photogrammetrie aus Luftfahrzeugen. The Geographical Journal, 57 (4): 304-305. DOI: https://doi.org/10.2307/1780576.
Wulder, M.A., White, J.C., Alvarez, F., Han, T., Rogan, J., Hawkes, B., 2009. Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sensing of Environment, 113 (7): 1540-1555. DOI: https://doi.org/10.1016/j.rse.2009.03.004.
Zimble, D.A., Evans, D.L., Carlson, G.C., Parker, R.C., Grado, S.C., Gerard, P.D., 2003. Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sensing of Environment, 87 (2-3): 171-182. DOI: https://doi.org/10.1016/S0034-4257(03)00139-1.