Nest trees selected by the grey−headed woodpecker in northeastern Poland
Wybór drzew gniazdowych przez dzięcioła zielonosiwego w północno−wschodniej Polsce
Sylwan 166 (9):566-578, 2022
DOI:
https://doi.org/10.26202/sylwan.2022064Available online: 2023-01-26
Open Access (CC-BY)
aspen • cavity trees • cavity entrance orientation • habitat preferences • Picus canus
Woodpeckers Picinae are recognised as important keystone species in forest ecosystems because many species of animals find shelters or breeding places in cavities woodpeckers excavate. We evaluated the nest tree preference of a European species, the grey−headed woodpecker (GHW), Picus canus Gmel., in the semi−boreal Augustów Forest in northeast Poland, an extensive forest complex covering 114 000 ha, dominated by fresh and mixed fresh coniferous forest. Nest trees made by the GHW were sought within areas identified by the playback of territorial vocalisations and drumming in spring. We found 35 cavities on 31 trees. Twenty−one of these cavities were made in trees of poor health and 14 in dead trees. Only deciduous trees were selected for excavation, specifically aspen Populus tremula L., silver birch Betula pendula Roth., and black alder Alnus glutinosa (L.) Gaertn. Alder was chosen most frequently, but according to Ivlev’s electivity index, the most preferred species was aspen. We found important differences between forest sites used by the grey−headed woodpecker. Most cavities were found in alder forest, with fewer in broadleaf fertile forest, mixed broadleaf forest, and mixed pine forest. Cavity trees were on average 83−years−old (ranging from 45 to 127 years). The average diameter of cavity trees used by the grey−headed woodpecker was 47.4 cm (ranging from 30 to 67 cm), of which the most numerous were trees with diameters between 30 and 40 cm. All cavities were excavated in trunks. Cavity entrances were located at an average height of 8.2 metres (4.5−14 m). The mean height of the first branch on excavated trees was 10.2 metres above ground and was higher than the average height of the cavity entrance. Cavities in birch were placed higher than in other tree species. A linear mixed model explaining cavity height above ground showed important effects for first branch height, which allows for higher placement of the cavities, and tree species, because cavities in aspen and alder were excavated significantly lower than in birch. The GHW preferentially placed cavity entrances on southern and eastern exposures, with entrance aspect related to cavity height above the ground. Our results underline the importance of aspen to GHW and indicate the need to maintain this tree species in managed forests.
Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67 (1): 1-48. DOI: https://doi.org/10.18637/jss.v067.i01.
BDL, 2022. htps://www.bdl.lasy.gov.pl/portal/mapy-en [accessed: 21.09.2022].
Bijak, S., Sarzyński, J., 2015. Accuracy of smartphone applications in the field measurements of tree height. Folia Forestalia Polonica, Seria A, 57: 240-244. DOI: https://doi.org/10.1515/ffp-2015-0025.
BULiGL, 2012. Plan Urządzenia Gospodarstwa Leśnego Nadleśnictwa Głęboki Bród na okres 01.01.2012-31.12.2021. Białystok: BULiGL.
BULiGL, 2013. Plan Urządzenia Gospodarstwa Leśnego Nadleśnictwa Pomorze na okres 01.01.2013-31.12.2022. Białystok: BULiGL.
BULiGL, 2014. Plan Urządzenia Gospodarstwa Leśnego Nadleśnictwa Szczebra na okres 01.01.2013-31.12.2022. Białystok: BULiGL.
BULiGL, 2015a. Plan Urządzenia Gospodarstwa Leśnego Nadleśnictwa Augustów na okres 01.01.2015-31.12.2024. Białystok: BULiGL.
BULiGL, 2015b. Plan Urządzenia Gospodarstwa Leśnego Nadleśnictwa Płaska na okres 01.01.2015-31.12.2024. Białystok: BULiGL.
Chodkiewicz, T., Kuczyński, L., Sikora, A., Chylarecki, P., Neubauer, G., Ławicki, Ł., Stawarczyk, T., 2015. Ocena liczebności populacji ptaków lęgowych w Polsce w latach 2008-2012. Ornis Polonica, 56 (3): 149-189.
Cockle, K.L., Martin, K., Wesołowski, T., 2011. Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide. Frontiers in Ecology and the Environment, 9: 377-382. DOI: https://doi.org/10.1890/110013.
Cramp, S., ed. 1985. Handbook of the birds of Europe, the Middle East and North Africa.Vol. 4. Oxford: Oxford Univ. Press, 923 pp.
Dębowski, P., Dukała, J., Wachecki, M., Szczepaniak, W., Stojek, G., Staśkowiak, A., Maślikowski, Ł., 2021. Liczebność dzięciołów Picidae w lasach wyżynnych Lasów Suchedniowskich. Ornis Polonica, 62 (2): 101-112.
Domokos, E., Cristea, V., 2014. Effects of managed forest structure on woodpeckers (Picidae) in the Niraj valley (Romania): Woodpecker populations in managed forests. North-western Journal of Zoology, 10 (1): 110-117.
Gorman, G., 2004. Woodpeckers of Europe. A study of the European Picidae. Chalfont St. Peter: Bruce Coleman, 192 pp.
Gorman, G., 2019. Characteristics of Grey-headed Woodpecker (Picus canus) cavities in Hungary. Aquila, 126: 33-39.
Jacobs, J., 1974. Quantitative measurements of food selection; a modification of the forage ratio and Ivlev’s electivity index. Oecologia, 14: 27-36.
Kassambara, A., 2020. Ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr
Kosiński, Z., Ciach, M., 2013. Dzięcioł zielonosiwy Picus canus. In: D. Zawadzka, M. Ciach, T. Figarski, Ł. Kajtoch, Ł. Rejt, eds. Materiały do wyznaczania i określania stanu zachowania siedlisk ptasich w obszarach specjalnej ochrony ptaków Natura 2000. Warszawa: GDOŚ, pp. 94-102.
Kosiński, Z., Kempa, M., 2007. Density, distribution and nest-sites of woodpeckers Picidae, in a managed forest of western Poland. Polish Journal of Ecology, 55 (3): 519-533.
Krasoń, K., Michalczuk, J., 2018. Dzięcioły Picidae obszaru Natura 2000 „Las nad Braciejową” i boru koło Przecławia. Chrońmy Przyrodę Ojczystą, 74 (4): 255-266.
Landler, L., Jusino, M.A, Skelton, J., Walters, J.R., 2014. Global trends in woodpecker cavity orientation: latitudinal and continental effects suggest regional climate influence. Acta Ornithologica, 49 (2): 257-266. DOI: https://doi.org/10.3161/173484714X687145.
Mikusiński, G., Roberge, J.M., Fuller, R.J., eds. 2018. Ecology and conservation of forest birds. Cambridge: Cambridge University Press, 552 pp.
Pakkala, T., Tiainen, J., Pakkala, H., Piha, M., Kouki, J., 2020. Nest tree characteristics of Grey-headed Woodpeckers (Picus canus) in boreal forest. Ornis Fennica, 97 (3): 89-100.
Pakkala, T., Tiainen, J., Pakkala, H., Piha, M., Kouki, J., 2021. Dynamics of the cavities of Grey-headed Woodpeckers Picus canus reveal their long- and short-term ecological roles in boreal forest. Acta Ornithologica, 56 (2): 199-208. DOI: https://doi.org/10.3161/00016454AO2021.56.2.006.
Remm, J., Lőhmus, A., 2011. Tree cavities in forests – The broad distribution pattern of a keystone structure for biodiversity. Forest Ecology and Management, 262 (4): 579-585. DOI: https://doi.org/10.1016/j.foreco.2011.04.028.
Requier, F., Paillet,Y., Laroche, F., Rutschmann, B., Zhang, J., Lombardi, F., Svoboda, M., Steffan-Dewenter, I., 2019. Contribution of European forest to safeguard wild honeybee populations. Conservation Letters: e12693. DOI: https://doi.org/10.1111/conl.12693.
Sikora, A., 2006. Rozmieszczenie i liczebność dzięcioła zielonosiwego Picus canus na Wysoczyźnie Elbląskiej i jego ekspansja na Warmii i Mazurach. Notatki Ornitologiczne, 47 (1): 32-42.
Sikora, A., Kosiński, Z., 2015. Dzięcioł zielonosiwy Picus canus. In: P. Chylarecki, A. Sikora, Z. Cenian, T. Chodkiewicz, eds. Monitoring ptaków lęgowych. Poradnik Metodyczny. Warszawa: GIOŚ, pp. 485-490.
Sokołowski, A., 2010. Puszcza Augustowska. Warszawa: CILP, 292 pp.
Südbeck, P., 2009. Beitrag zur Höhlenökologie des Grauspechts Picus canus. Osnabrücker Naturwissenschaftliche Mitteilungen, 35: 263-274.
Tomanek, J., Witkowska-Żuk, L., 1996. Botanika leśna. Warszawa: PWRiL, 506 pp.
Walankiewicz, W., Czeszczewik, D., 2005. Wykorzystanie osiki Populus tremula przez ptaki w pierwotnych drzewo-stanach Białowieskiego Parku Narodowego. Notatki Ornitologiczne, 46 (1): 9-14.
Wojton, A., Krasoń, K., 2017. Wykorzystanie płatów drzewostanów liściastych przez stenotopowe gatunki dzięciołów w lasach z dominacją sosny w południowo-wschodniej Polsce. Sylwan, 161 (11): 940-948. DOI: https://doi.org/10.26202/sylwan.2017052.
Zawadzka, D., 2014. Popularny plan ochrony Wigierskiego Parku Narodowego. Wigierski Park Narodowy, Krzywe, 174 pp.
Zawadzka, D., 2018. Dziuple w ekosystemach leśnych: formowanie, rozmieszczenie, znaczenie ekologiczne i wskazania ochronne. Sylwan, 162 (6): 509-520. DOI: https://doi.org/10.26202/sylwan.2018030.
Zawadzka, D., Zawadzki, G., 2017. Charakterystyka drzew gniazdowych dzięcioła czarnego w Puszczy Augustowskiej. Sylwan, 161 (12): 1002-1009. DOI: https://doi.org/10.26202/sylwan.2017104.
Zawadzka, D., Zawadzki, J., Zawadzki, G., Zawadzki, S., 2011. Wyniki inwentaryzacji ornitologicznej na terenie OSO PLB20002 Puszcza Augustowska w 2010 roku. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, 13 (27): 89-104.