Harvester productivity and tree damage in thinning operations in pine stands in relation to the width of skid trails
Efektywność pozyskania drewna harwesterem i uszkodzenia drzew w zależności od szerokości szlaków zrywkowych
Sylwan 168 (2):111-126, 2024
DOI:
https://doi.org/10.26202/sylwan.2023120Available online: 2024-04-18
Open Access (CC-BY)
cut−to−length method • logging • merchantable timber • skid trails • thinning • tracked harvester
Fully mechanised timber harvesting in cut−to−length method (CTL) has a number of advantages compared to tree−length (TL) and whole tree method (WT), including lowering unit costs, increasing productivity and reducing or even eliminating heavy manual labour. The demographic changes we are seeing, and thus the expectations of the workforce and competition in the labour market, mean that fully mechanised work or automation will be essential in the future. The aim of this article is to analyse the damage to remaining trees in the stand and the efficiency of the work in relation to the width of the skid trails (narrow 2.7 m and wide 3.5 m). Analyses were carried out during the first thinning cuts in a 25−year−old pine stand with so− called industrial wood. A small tracked excavator equipped with a harvester head was used in the experimental plots. The efficiency of the work is influenced by the volume of a single tree, the thinning intensity and the stand density. The same variables also determine the effect on the amount of damage in the stand remaining. The parameters characterising the damage to the trees remaining in the stand indicate the occurrence of significantly longer wounds in the sample plots with wide access trails and a higher total area of wounds (+40%) compared to the damage observed in the sample plots with narrow access trails. From the results obtained, it can also be assumed that the very serious damage, deep injures in the wood of trunk and root amputation are random and do not depend on the width of the trails. The results show the importance of choosing the right machine to facilitate work in dense stands. The observed wounds according to Meyer’s tree damage classification do not allow statis− tically significant differences between damage occurring with both narrow and wide skid trails. However, any bark damage and other damage to tree trunks increases the risk of head rot and thus significantly reduces the future potential for top quality timber. Narrow skid trails reduce non−productive areas and simultaneously increase the difficulty of mechanical thinning. However, when using wide skid trails (3.5 m), a higher operating efficiency of approximately 12% was observed.
Bembenek, M., Tsioras, P. A., Karaszewski, Z., Zawieja, B., Bakinowska, E., Mederski, P.S., 2020. Effect of day or night and cumulative shift time on the frequency of tree damage during CTL harvesting in various stand conditions. Forests, 11 (7): 743. DOI: https://doi.org/10.3390/f11070743.
Bruchwald, A., 2004. Pośredni sposób budowy modelu przekroju podłużnego strzały bez kory sosny. (An indirect method of building a taper model construction for pine stem inside bark). Sylwan, 148 (8): 3-7. DOI: https://doi.org/10.26202/sylwan.2004060.
Camp, A., 2002. Damage to residual trees by four mechanized harvest systems operating in small-diameter, mixed-conifer forests on steep slopes in Northeastern Washington: a case study. Western Journal of Applied Forestry, 17 (1): 14-22. DOI: https://doi.org/10.1093/wjaf/17.1.14.
Campu, V.R., Borz, S.A., 2017. Amount and structure of tree damage when using cut-to-length system. Environmental Engineering and Management Journal, 16 (9): 2053-2061. DOI: https://doi.org/10.30638/eemj.2017.213.
Cântar, I.C., Ciontu, C.I., Dincă, L., Borlea, G.F., Crişan, V.E., 2022. Damage and tolerability thresholds for remaining trees after timber harvesting: A case study from southwest Romania. Diversity, 14 (3): 193. DOI: https://doi.org/10.3390/d14030193.
Cudzik, A., Brennensthul, M., Białczyk, W., Czarnecki, J., 2017. Damage to soil and residual trees caused by different logging systems applied to late thinning. Croatian Journal of Forest Engineering, 38 (1): 83-95.
del Río Gaztelurrutia, M., Oviedo, J.A.B., Pretzsch, H., Löf, M., Ruiz-Peinado, R., 2017. A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change. Forest Systems, 26 (2): 9. DOI: https://doi.org/10.5424/fs/2017262-11325.
Dykstra, D.P., Heinrich, R., 1996. FAO model code of forest harvesting practice. Rome: The Food and Agriculture Organization (FAO), 95 pp.
Giefing, D.F., Bembenek, M., Gackowski, M., Grzywiński, W., Karaszewski, Z., Klentak, I., Kosak, J., Mederski, P.S., Siewert, S., 2012. Ocena procesów technologicznych pozyskiwania drewna w trzebieżach późnych drzewostanów sosnowych. Metodologia badań. (Evaluation of thinning operations in older pine stands. Research methods). Nauka Przyroda Technologie, 6 (3): 59.
Grzywiński, W., Turowski, R., Naskrent, B., 2020. Wpływ pory roku na uszkodzenia drzewostanów olchowych podczas trzebieży wczesnej. (Influence of the season on damage in black alder stands during early thinning). Sylwan, 164 (5): 365-372. DOI: https://doi.org/10.26202/sylwan.2020032.
Han, H.S., Kellogg, L.D., 2000. Damage characteristics in young Douglas-fir stands from commercial thinning with four timber harvesting systems. Western Journal of Applied Forestry, 15 (1): 27-33. DOI: https://doi.org/10.1093/wjaf/15.1.27.
Holzinger, A., Saranti, A., Angerschmid, A., Retzlaff, C.O., Gronauer, A., Pejaković, V., Medel-Jimenez, F., Krexner, T., Gollob, C., Stampfer, K., 2022. Digital transformation in smart farm and forest operations needs human-centered AI: Challenges and future directions. Sensors, 22 (8): 3043. DOI: https://doi.org/10.3390/s22083043.
Kizha, A.R., Nahor, E., Coogen, N., Louis, L.T., George, A.K. 2021. Residual stand damage under different harvesting methods and mitigation strategies. Sustainability, 13 (14): 7641. DOI: https://doi.org/10.3390/su13147641.
Kohnle, U., Kändler, G., 2007. Is Silver fir (Abies alba) less vulnerable to extraction damage than Norway spruce (Picea abies)? European Journal of Forest Research, 126 (1): 121-129. DOI: https://doi.org/10.1007/s10342-006-0137-3.
Latterini, F., Mederski, P.S., Jaeger, D. Venanzi, R., Tavankar, F., Picchio, R., 2023. The influence of various silvicultural treatments and forest operations on tree species biodiversity. Current Forestry Reports, 9: 59-71. DOI: https://doi.org/10.1007/s40725-023-00179-0.
Leszczyński, K., Stańczykiewicz, A., Kulak, D., Szewczyk, G., Tylek, P., 2021. Estimation of productivity and costs of using a track mini-harvester with a stroke head for the first commercial thinning of a Scots pine stand. Forests, 12 (7): 870. DOI: https://doi.org/10.3390/f12070870.
Lotfalian, M., Emadian, S.F., Kooch, Y., Parsa Khoo, A., 2010. A method for economic assessment of logging damage on forest stand and regeneration. Scandinavian Journal of Forest Research, 25 (1): 78-88. DOI: https://doi.org/10.1080/02827581003620339.
Magagnotti, N., Spinelli, R., ed. 2012. Good practice guidelines for biomass productions studies. Sesto Fiorentino: CNR-IVALSA Istituto per la Valorizzazione del Legno e delle Specie Arboree, 52 pp. Available from: https://pub.epsilon.slu.se/10656/11/magagnotti_n_spinelli_r_130812.pdf [accessed: 10.04.2021].
Marchi, E., Chung, W., Visser, R., Abbas, D., Nordfjell, T., Mederski, P.S., McEwan, A., Brink, M., Laschi, A., 2018. Sustainable forest operations (SFO): A new paradigm in a changing world and climate. Science of the Total Environment, 634: 1385-1397. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.084.
Marković, M., Mitić, D., Rajković, S., Rakonjac, L., Lučić, A., Marković, M., Rajković, R., 2013. Analysis of the link between injuries on forest trees and presence of harmful fungal organisms. Scientific Research and Essays, 8 (35): 1688-1700. DOI: https://doi.org/10.5897/SRE12.412.
Mederski, P.S., Bembenek, M., Karaszewski, Z., Łacka, A., Szczepańska-Álvarez, A., Rosińska, M., 2016. Estimating and modelling harvester productivity in pine stands of different ages, densities and thinning intensities. Croatian Journal of Forest Engineering, 37(1): 27-36.
Mederski, P.S., Venanzi, R., Bembenek, M., Karaszewski, Z., Rosińska, M., Pilarek, Z., Luchenti, I., Surus, M., 2018. Designing thinning operations in 2nd age class pine stands – economic and environmental implications. Forests, 9 (6): 335. DOI: https://doi.org/10.3390/f9060335.
Mederski, P.S., Borz, S.A., Đuka, A., Lazdin¸š, A., 2021. Challenges in forestry and forest engineering – case studies from four countries in East Europe. Croatian Journal of Forest Engineering, 42 (1): 117-134. DOI: https://doi.org/10.5552/crojfe.2021.838.
Meredieu, C., Perret, C., Dreyfus, P., 2003. Modelling dominant height growth: Effect of stand density. In: A. Amaro, D. Reed, P. Soares, ed. Modelling Forest Systems. London: CABI Publishing, pp. 111-123.
Moskalik, T., Borz, S.A., Dvořák, J., Ferenčík, M., Glushkov, S., Muiste, P., Lazdin¸š, A., Styranivsky, O., 2017. Timber harvesting methods in Eastern European countries: A review. Croatian Journal of Forest Engineering, 38 (2): 231-241.
Palander, T.S., Eronen, J.P., Peltoniemi, N.P., Aarnio, A.I., Kärhä, K., Ovaskainen, H.K., 2019. Improving a stem-damage monitoring system for a single-grip harvester using a logistic regression model in image processing. Biosystems Engineering, 180: 36-49. DOI: https://doi.org/10.1016/j.biosystemseng.2019.01.011.
Picard, N., Gourlet-Fleury, S., Forni, É., 2012. Estimating damage from selective logging and implications for tropical forest management. Canadian Journal of Forest Research, 42 (3): 605-613. DOI: https://doi.org/10.1016/j.gecco.2019.e00688.
Picchio, R., Mederski, P.S., Tavankar, F., 2020. How and how much, do harvesting activities affect forest soil, regeneration and stands? Current Forestry Reports, 6 (2): 115-128. DOI: https://doi.org/10.1007/s40725-020-00113-8.
Picchio, R., Tavankar, F., Bonyad, A., Mederski, P.S., Venanzi, R., Nikooy, M., 2019. Detailed analysis of residual stand damage due to winching on steep terrains. Small-scale Forestry, 18 (2): 255-277. DOI: https://doi.org/10.1007/s11842-019-09417-5.
Picchio, R., Neri, F., Maesano, M., Savelli, S., Sirna, A., Blasi, S., Baldini, S., Marchi, E., 2011. Growth effects of thinning damage in a Corsican pine (Pinus laricio Poiret) stand in central Italy. Forest Ecology and Management, 262: 237-243. DOI: https://doi.org/10.1016/j.foreco.2011.03.028.
Pierzchała, M., Kvaal, K., Stampfer, K., Talbot, B., 2018. Automatic recognition of work phases in cable yarding supported by sensor fusion. International Journal of Forest Engineering, 29 (1): 12-20. DOI: https://doi.org/10.1080/14942119.2017.1373502.
Putz, F.E., Sist, P., Fredericksen, T., Dykstra, D., 2008. Reduced-impact logging: Challenges and opportunities. Forest Ecology and Management, 256: 1427-1433. DOI: https://doi.org/10.1016/j.foreco.2008.03.036.
Ruiz-Peinado, R., Bravo-Oviedo, A., Montero, G., Del Río, M., 2016. Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitigation and Adaptation Strategies for Global Change, 21: 1059-1072. DOI: https://doi.org/10.1007/s11027-014-9585-0.
Shabani, S., Jaafari, A., Bettinger, P., 2021. Spatial modeling of forest stand susceptibility to logging operations. Environmental Impact Assessment Review, 89: 106601. DOI: https://doi.org/10.1016/j.eiar.2021.106601.
Stempski, W., Jabłoński, K., Jakubowski, J., 2021. Effects of strip roads on volume increment of edge trees. Drewno, 64: 5-15. DOI: https://doi.org/10.12841/wood.1644-3985.348.01.
Suchomel, C., Spinelli, R., Magagnotti, N., 2012. Productivity of processing hardwood from coppice forests. Croatian Journal of Forest Engineering, 33 (1): 39-47.
Szewczyk, G., Krilek, J., Kulak, D., Leszczyński, K., Pacia, T., Sowa, J.M., Stańczykiewicz, A., 2023. Economic efficiency of fully mechanized timber harvesting in coniferous stands of the 2nd age class. Annals of Forest Research, 66 (1): 155-169. DOI: https://doi.org/10.15287/afr.2023.2491.
Tavankar, F., Ezzati, S., Latterini, F., Lo Monaco, A., Venanzi, R., Picchio, R., 2022. Assessment of wound recovery and radial growth 10 years after forest operations in hardwood stands. Forests, 13 (9): 1393. DOI: https://doi.org/10.3390/f13091393.
Tavankar, F., Majnounian, B., Bonyad, A.E., 2013. Felling and skidding damage to residual trees following selection cutting in Caspian forests of Iran. Journal of Forest Science, 59 (5): 196-203. DOI: https://doi.org/10.17221/53/2012-JFS.
TIBCO Software Inc., 2017. Statistica (data analysis software system), version 13. Available from: http://statistica.io.
Ursić, B., Vusić, D., Papa, I., Poršinsky, T., Zečić, Ž., Đuka, A., 2022. Damage to residual trees in thinning of broadleaf stand by mechanised harvesting system. Forests, 13 (1): 51. DOI: https://doi.org/10.3390/f13010051.
Vasiliauskas, R., 2001. Damage to trees due to forestry operations and its pathological significance in temperate forests: A literature review. Forestry, 74 (4): 319-336. DOI: https://doi.org/10.1093/forestry/74.4.319.
Yilmaz, E., Makineci, E., Demir, M., 2010. Skid road effects on annual ring widths and diameter increment of fir (Abies bornmulleriana Mattf.) trees. Transportation Research Part D: Transport and Environment, 15 (6): 350-355. DOI: https://doi.org/10.1016/j.trd.2010.02.007.