Article

Interspecific interactions in dual cultures of selected fungal species inhabiting Scots pine trees
Interakcje międzygatunkowe w kulturach dualnych wybranych gatunków grzybów zasiedlających drewno sosny zwyczajnej
MAŁGORZATA OSMENDA, KATARZYNA NAWROT-CHORABIK
Sylwan 168 (2):127-145, 2024
DOI: https://doi.org/10.26202/sylwan.2023107
Available online: 2024-04-18
Open Access (CC-BY)
Basidiomycota • interspecific competition • rot fungi • wood decay

Abstract
Global warming is the result of the impact of many factors on the environment, the most important of which is high carbon dioxide emissions. In order to reduce the emission of this greenhouse gas into the atmosphere, the development of future−proof and effective methods involving longterm storage of carbon dioxide is being considered in the form of plant biomass. Unfortunately, the ability to store carbon dioxide in woody biomass is limited by fungi. The presence of numerous fungi on the wood raw material leads through their growth to the rapid decomposition of wood, thus accelerating the release of CO2 from biomass into the Earth’s atmosphere. Therefore, laboratory studies were carried out demonstrating interspecies interactions with the aim of examining in vitro biotic interactions between selected fungi, e.g. competition or mutualism. Cultures of seven selected fungi were combined in various combinations of dual cultures. The fungi species used in the research were: Ophiostoma minus, Trichaptum fuscoviolaceum, Serpula himantioides, Stereum sanguinolentum, Skeletocutis amorpha, Skeletocutis sp. and Armillaria ostoyae. The first laboratory experiments were carried out on a medium (potato−dextrose agar PDA). In the experiments carried out, first of all, the growth possibilities and speed of development of single fungi cultures and their dual fungus−fungus cultures were discussed. Then, studies were performed on the influence of both single cultures of fungi and their double cultures of the fungusfungus type on the decomposition of the sawdust from pine sapwood and heartwood. The aim of the study was to assess the rate of wood substrate decomposition by fungi with differenttrophic preferences. The conducted research constitutes the basis for developing a future methodology for long−term carbon dioxide retention in woody biomass. This assumption is the basic foundation for the practical creation of future−proof and environmentally significant Forest Carbon Farms in outdoor conditions. Moreover, based on the research conducted, it will be possible to develop innovative fungicidal preparations. The obtained results under the described experimental conditions showed that the fungal species whose cultures reached the largest size and thus limited the growth of other fungi to the greatest extent were O. minus, T. fuscoviolaceum, S. himantioides. However, the species whose development was severely limited were Skeletocutis sp., and A. ostoyae. Moreover, the obtained results of testing the possibility sawdust colonisation from sapwood and heartwood confirmed that single cultures of T. fuscoviolaceum and S. himantioides have the ability to intensively decompose both types of sawdust. It was found that the dual cultures of O. minus and S. himantioides caused the greatest loss of sapwood sawdust mass, while the dual cultures of S. sanguinolentum and S. amorpha led to the most intense reduction of heartwood sawdust.

Literature
Adomas, A., Heller, G., Olson, A., Osborn, J., Karlsson, M., Nahalkova, J., Van Zyl, L., Sederoff, R., Stenlid, J., Finlay, R., Asiegbu, F.O., 2008. Comparative analysis of transcript abundance in Pinus sylvestris after challenge with a saprotrophic, pathogenic or mutualistic fungus. Tree Physiology, 28 (6): 885-897. DOI: https://doi.org/10.1093/treephys/28.6.885.
Anderson, J.B., 1986. Biological Species of Armillaria in North America: Redesignation of groups IV and VIII and enumeration of voucher strains for other groups. Mycologia, 78 (5): 837-839. DOI: https://doi.org/10.2307/3807531.
Aquevequea, P., Ankeb, T., Sternerc, O., 2002. The Himanimides, new bioactive compounds from Serpula himantoides (Fr.) Karst. Zeitschrift für Naturforschung C, 57 (3-4): 257-262. DOI: https://doi.org/10.1515/znc-2002-3-410.
Arango-Velez, A., Chakraborty, S., Blascyk, K., Phan, M.T., Barsky, J., El Kayal, W., 2018. Anatomical and chemical responses of Eastern White Pine (Pinus strobus L.) to Blue-Stain (Ophiostoma minus) inoculation. Forests, 9 (11): 690. DOI: https://doi.org/10.3390/f9110690.
Bartnik, C., 2007. Saprotrofy – rola w ekosystemie leśnym oraz możliwość ich wykorzystania w gospodarce leśnej. (Saprotrofic fungi – Its role in forest ekosystem and possibilies to utilise in forestry). Studia i Materiały Centrum Edukacji Przyrodniczo Leśnej, 16: 530-540.
Bartnik, C., Ledwich, D., 2021. Grzyby zasiedlające drewno reliktowej sosny zwyczajnej z Sokolicy z objawami zgnilizny oraz ich interakcje biotyczne. (Fungi inhabiting wood of Sokolica relict Pinus sylvestris with rot symptoms and their biotic interactions). Pieniny – Przyroda i Człowiek Monografie, 17: 53-72.
Baumgartner, K., Oetzee, M.P.A., Offmeister, D., 2011. Secrets of the subterranean pathosystem of Armillaria. Molecular Plant Pathology, 12 (6): 515-534. DOI: 10.1111/J.1364-3703.2010.00693.X.
Baumgartner, K., Rizzo, D.M., 2001. Distribution of Armillaria species in California. Mycologia, 93 (5): 821-830. DOI: https://doi.org/10.1080/00275514.2001.12063217.
Čermák, P., Strejček, M., 2007. Stem decay by Stereum sanguinolentum after red deer damage in the Českomoravská vrchovina Highlands. Journal of Forest Science, 53 (12): 567-572.
Chudy, R., Szulecki, K., Siry, J., Grala, R., 2021. Biomasa drzewna jako surowiec dla energetyki. Akademia – Magazyn Polskiej Akademii Nauk, 1 (65): 62-65. DOI: https://doi.org/10.24425/academiaPAN.2021.136849.
Cui, D., Xue, J., Cao, J., 2023. Dual-fungi competition and its influence on wood degradation. Industrial Crops and Products, 198 (18): 116643. DOI: https://doi.org/10.1016/j.indcrop.2023.116643.
Czacharowski, M., Drozdowski, S., 2021. Zagospodarowanie drzewostanów sosnowych (Pinus sylvestris L.) w zmie-niających się uwarunkowaniach środowiskowych i społecznych. [Management of Scots pine (Pinus sylvestris L.) stands under changing environmental and social conditions]. Sylwan, 165 (5): 355-370. DOI: https://doi.org/10.26202/sylwan.2021030.
Dell Inc., 2016. Dell Statistica (data analysis software system), version 13. Available from: software.dell.com [accessed: 21.01.2024].
Graso Biotech, 2024. Katalog produktów. (Product catalog). Available from: https://grasobiotech.pl/wp-content/uploads/2023/10/GRASO-Katalog-produktowy.pdf [accessed: 21.01.2024].
Grodzki, W., 2004. Zagrożenie górskich drzewostanów świerkowych w zachodniej cześci Beskidów ze strony szkodników owadzich. (Threat to Norway Spruce stands of insect pests in the western part of Beskidy Mountains). Leśne Prace Badawcze, 2: 35-47.
Gupta, V.K., Tuohy, M.G., Ayyachamy, M., Turner, K.M., O’Donovan, A., 2022. Laboratory protocols in fungal biology: Current methods in fungal biology. New York: Springer, 629 pp. DOI: https://doi.org/10.1007/978-3-030-83749-5.
Isidorov, V.A., Lech, P., Żółciak, A., Rusak, M., Szczepaniak, L., 2008. Gas chromatographic – mass spectrometric investigation of metabolites from the needles and roots of pine seedlings at early stages of pathogenic fungi Armillaria ostoyae attack. Trees, 22: 531-542. DOI: https://doi.org/10.1007/s00468-008-0213-z.
Karlsson, M., Olson, A., Stenlid, J., 2003. Expressed sequences from the basidiomycetous tree pathogen Heterobasidion annosum during early infection of scots pine. Fungal Genetics and Biology, 39 (1): 51-59. DOI: https://doi.org/10.1016/S1087-1845(02)00586-8.
Kogel, K.H., Franken, P., Hückelhoven, R., 2006. Endophyte or parasite – what decides? Current Opinion in Plant Biology, 9 (4): 358-363. DOI: https://doi.org/10.1016/j.pbi.2006.05.001.
Konofalska, E., Kozakiewicz, P., Buraczyk, W., Szeligowski, H., Lachowicz, H., 2021. The technical quality of the wood of Scots Pine (Pinus sylvestris L.) of diverse genetic origin. Forests, 12 (5): 619. DOI: https://doi.org/10.3390/f12050619.
Kozakiewicz, P., 2019. Sosna zwyczajna (Pinus sylvestris L.) – polskie drewno. [Scots pine (Pinus sylvestris L.) – Polish wood]. Przemysł Drzewny – Research and Development, 2 (25): 72-77.
Kozłowski, J., 2019. Jak najlepiej wykorzystać lasy do sekwestracji dwutlenku węgla? (How can we best use forests to sequester carbon dioxide?) Nauka, 4: 47-56. DOI: https://doi.org/10.24425/nauka.2019.131141.
Kundzewicz, A.W., 1993. Współdziałanie grzybow Fomes fomentarius (L. ex Fr.) Kickx. i Piptoporus betulinus (Bull. ex Fr.) P. Karst. in vitro. [Cooperation of fungi Fomes fomentarius (L. ex Fr.) Kickx. and Piptoporus betulinus (Bull. ex Fr.) P. Karst. in vitro]. Folia Forestalia Polonica, Series B, 24: 23-27.
Lin, X., Zhu, X., Han, Y., Geng, Z., Liu, L., 2020. Economy and carbon dioxide emissions effects of energy structures in the world: Evidence based on SBM-DEA model. Science of the Total Environment, 729 (6): 138947. DOI: https://doi.org/10.1016/j.scitotenv.2020.138947.
Maier, A., Riedlinger, J., Fiedler, H.P., Hampp, R., 2004. Actinomycetales bacteria from a spruce stand: Characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycological Progress, 3: 129-136. DOI: https://doi.org/10.1007/s11557-006-0083-y.
Małecka, M., Sierota, Z., Żółciak, A., 2012. Porównanie skuteczności preparatów z grzybem Phlebiopsis gigantea zastoso-wanych do zabezpieczania pniaków sosnowych na gruntach porolnych przed infekcją pierwotną Heterobasidion annosum. (Comparison of efficacy of the biological preparation with some Phlebiopsis gigantea isolates used to protect Scots pine stumps against primary infection of Heterobasidion annosum on post agricultural lands.) Sylwan, 156 (7): 526-532. DOI: https://doi.org/10.26202/sylwan.2011110.
Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., Erlich, H., 1986. Specific amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symposia Quantitative Biology, 51: 263-273.
Nawrot-Chorabik, K., 2013. Możliwości wykorzystania kultur dualnych w praktyce leśnej. (Possible use of dual cultures in the forestry practice). Sylwan, 157 (1): 54-62. DOI: https://doi.org/10.26202/sylwan.2011034.
Nawrot-Chorabik, K., Grad, B., Kowalski, T., 2016. Interactions between callus cultures of Pinus sylvestris and pine fungi with different trophic properties. Forest Pathology, 46 (3): 179-186. DOI: https://doi.org/10.1111/efp.12240.
Nawrot-Chorabik, K., Marcol-Rumak, N., Latowski, D., 2021. Investigation of the biocontrol potential of two ash endophytes against Hymenoscyphus fraxineus using in vitro plant – fungus dual cultures. Forests, 12 (12): 1750. DOI: https://doi.org/10.3390/f12121750.
Nawrot-Chorabik, K., Sułkowska, M., Osmenda, M., Mohytych, V., Surówka, E., Latowski, D., 2022. The Impact of biotic and abiotic stress factors on development of European ash tissue cultures. Forests, 13 (1): 59. DOI: https://doi.org/10.3390/f13010059.
Pan, Y., Birdsey, R.A., Fang J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., Mcguire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the World’s Forests. Science, 333: 988-993. DOI: https://doi.org/10.1126/science.1201609.
Revesz, R.L., Howard, P.H., Arrow, K., Goulder, L.H., Kopp, R.E., Livermore, M.A., Oppenheimer, M., Sterner, T., 2014. Global warming: Improve economic models of climate change. Nature, 508: 173-175. DOI: https://doi.org/10.1038/508173a.
Rykowski, K., Sierota, Z., 1977. Badania nad przygotowaniem do produkcji biopreparatu z grzybem (Phlebia gigantea (Fr.) Donk.). [Studies on possibilities of production of a biopreparation basing on the fungi (Phlebia gigantea (Fr.) Donk.]. Prace Instytutu Badawczego Leśnictwa, 534: 73-90.
Sierota, Z., 2012. Wpływ grzybów rozkładających korzenie drzew leśnych na uwalnianie CO2 – próba waloryzacji. (Effect of fungi decomposing roots of forest trees on CO2 release – an attempt of evaluation). Sylwan, 156 (2): 128-136. DOI: https://doi.org/10.26202/sylwan.2011081.
Sierota, Z., 2013. Heterobasidion root rot in forests on former agricultural lands in Poland: Scale of threat and prevention. Scientific Research and Essays, 8 (47): 2298-2305. DOI: https://doi.org/10.5897/SRE2013.5724.
Solheim, H., Krokene, P., Lĺngström, B., 2001. Effects of growth and virulence of associated blue-stain fungi on host colonization behaviour of the pine shoot beetles Tomicus minor and T. piniperda. Plant Pathology, 50: 111-116. DOI: https://doi.org/10.1046/j.1365-3059.2001.00541.x.
Sołtys, A., Zawadzki, G., 2018. Choroby grzybowe jako czynnik zagrażający stabilności lasów. (Fungal diseases as a factor threatening the stability of forests). Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, 20 (54): 83-92.
Sugano, J., Maina, N., Wallenius, J., Hildén, K., 2021. Enhanced lignocellulolytic enzyme activities on hardwood and softwood during interspecific interactions of White- and Brown-Rot Fungi. Fungi, 7 (4): 265 1-17. DOI: https://doi.org/10.3390/jof7040265.
Szczepkowski, A., 2012. Grzyby nadrzewne w innym świetle – użytkowanie owocników. (Arboreal fungi in a different light – the use of sporocarps). Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej, 14 (32): 171-189.
Tomšovský, M., Menkis, A., Vasaitis, R., 2010. Phylogenetic relationships in European Ceriporiopsis species inferred from nuclear and mitochondrial ribosomal DNA sequences. Fungal Biology, 114 (4): 350-358. DOI: https://doi.org/10.1016/j.funbio.2010.02.004.
Tripati, A.K., Roberts, C.D., Eagle, R.A., 2009. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science, 326: 1394-1397. DOI: https://doi.org/10.1126/science.1178296.
Větrovský, T., Voříšková, J., Šnajdr, J., Gabriel, J., Baldrian, P., 2011. Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius. Biodegradation, 22: 709-718. DOI: https://doi.org/10.1007/s10532-010-9390-8.
Wargo, P.M., Carey, A.C., 2008. Effects of metals and pH on in vitro growth of Armillaria ostoyae and other root and butt rot fungi of red spruce. Forest Pathology, 31 (1): 5-24. DOI: https://doi.org/10.1046/j.1439-0329.2001.00218.x.
Watanabe, T., Watanabe, Y., Nakamura, K., 2003. Biodegradation of wood in dual cultures of selected two fungi determined by chopstick method. Journal of Bioscience and Bioengineering, 95 (6): 623-626. DOI: https://doi.org/10.1016/S1389-1723(03)80173-1.
Wójcik-Oliveira, K., 2019. Sekwestracja CO2 przez ekosystemy lądowe jako sposób na złagodzenie zamian klimatu. In: A. Danielewska, M. Maciąg, eds. Nowoczesne technologie XXI w. – przegląd, trendy i badania. Tom 1. Lublin: Wydawnictwo Naukowe Tygiel, pp. 181-188.
Xue, J., Cui, D., Cao, J., 2023. Competition patterns and biodegradation results of multiple fungal species on Moso bamboo (Phyllostachys edulis). Wood Material Science and Engineering, 18 (3): 1105-1114, DOI: https://doi.org/10.1080/17480272.2022.2109209.
Yu, C., Dai, Y., Wang, Z., 2004. A preliminary study on wood-inhabiting fungi on charred wood in Daxinganling forest areas. The Journal of Applied Ecology, 15 (10): 1781-1784.
Zhan-Bo, L., Hong-Min, Z., Hong-Gao, L.,Yuan, Y., 2023. Taxonomy and phylogeny of Sidera (Hymenochaetales, Rickenella clade) from China and North America revealing two new species. MycoKey, 96: 173-191. DOI: https://doi.org/10.3897/mycokeys.96.100743.
Żółciak, A., 1991. Zmienność wewnątrzgatunkowa grzybów z rodaju Armillaria – identyfikacja polskich izolatów z rodzaju Armillaria. (Intraspecific variability of fungi from the genus Armillana – Identification of Polish isolates of the genus Armillana). Sylwan, 135 (11): 27-40.
Żółciak, A., 1997. Występowanie grzybów na strzałach sosny zwyczajnej (Pinus sylvestris L.) w obrębie ran powstałych przy wykonywaniu prac trzebieżowych. [The prevelance of fungi on pine trunks (Pinus sylvestris L.) within the wounds occured during thinning]. Prace Instytutu Badawczego Leśnictwa Seria A, 833: 86-104.
Żółciak, A., 2007. Inokulacja pniaków sosnowych preparatami biologicznymi z Phlebiopsis gigantea. (Scots pine stumps inoculation with Phlebiopsis gigantea biological preparations). Leśne Prace Badawcze, 2: 77-94.