Możliwości ręcznego przemieszczania surowca krótkiego podczas pozyskania sosny, świerka, brzozy i buka w cięciach pielęgnacyjnych
Capabilities of manhandling small logs in commercial thinning in pine, spruce, beech, and birch stands
Sylwan 162 (7):531-538, 2018
Available online: 2018-07-19
Open Access (CC-BY)
health • musculoskeletal symptoms • loggers • weight of logs • green density

The aim of this study was to measure the weight of timber obtained from freshly cut trees and compare it with the applicable legal provisions pertaining the capability of transporting heavy loads by hand and also to indicate a problem significant for the occupational safety and health protection of employees working at wood harvesting. In Poland, about 40 million m³ of timber is harvested annually. The logs, with small diameter and length, are prepared for forwarding by arranging them by employees in the so called ‘packages’, which are placed by the route of the machine that collects and transports them to the logging road. Manhandling of the logs is an activity requiring the greatest energy expenditure (over 30 kJ/min) in the process of tree harvesting. Furthermore, it is also one of the key factors, which may lead to the development of musculoskeletal disorders. Regulations existing in the Polish labour law regulate the permitted weight of transported loads depending on the activity duration. For loads transported single−handedly this is 30 kg for a permanent employer, whereas 50 kg for workers doing the job occasionally or temporarily (no more than 4 times per hour and no longer than 4 hours during workday). Logs heavier than 50 kg may be carried only collectively providing the requirements of the minimal length (0,75 m) of the log per one person are met. We produced 2,5 m long logs and weighted them with an accuracy of 0,1 kg. The analysis revealed that approximately 30% of logs weighed between 30 and 50 kg, which introduces limitations in the number of carried logs per one person within a single shift. However, about 10% of the pine, 15% of spruce, 12% of beech and 38% of birch logs were heavier than 50 kg which should prevent carrying them single−handedly. Unfortunately, collective preparation of timber for forwarding is not popular among workers due to reduction in output, and at the same time the lower salary. Even if log for forwarding is prepared by two labourers, they most often work separately. As a result, the limits of the weight carried single-handedly by labourer are notoriously violated and exceeded.

Anisimov P., Onuchin E., Vishnievskaja M. 2017. Modeling pine and birch whole tree drying in bunches in the cutting area. Croatian Journal of Forest Engineering 38 (1): 11-17.
Ashby L., Bentley T., Parker R. 2001. Musculoskeletal disorders in silviculture and logging 1995-1999. COHFE Report 2 (3): 1-8.
Beedlow P. A., Tingey D. T., Waschmann R. S., Phillips D. L., Johnson M. G. 2007. Bole water content shows little seasonal variation in century-old Douglas-fir trees. Tree Physiology 27: 737-747.
Filbakk T., Hřibř O. A., Dibdiakova J., Nurmi J. 2011. Modelling moisture content and dry matter loss during storage of logging residues for energy. Scandinavian Journal of Forest Research 26 (3): 267-277. DOI: 10.1080/ 02827581.2011.553199.
Gallis C. 2006. Work-related prevalence of musculoskeletal symptoms among Greek forest workers. International Journal of Industrial Ergonomics 36 (8): 731-736.
Grzywiński W. 2004. Energy load of workers employed at timber harvesting. Electronic Journal of Polish Agricultural Universities, Series Forestry 7 (2).
Grzywiński W. 2011. Wpływ wybranych czynników na rodzaj pozycji roboczych operatora pilarki spalinowej podczas ścinki drzew. Wyd. Uniwersytetu Przyrodniczego w Poznaniu, Poznań. Rozpr. Nauk. 424: 1-99.
Grzywiński W. 2017. Koszt energetyczny pracy i możliwości jego kształtowania w leśnictwie. Postępy Techniki w Leś-nictwie 136: 32-37.
Grzywiński W., Wandycz A., Tomczak A., Jelonek T. 2016. The prevalence of self-reported musculoskeletal symptoms among loggers in Poland. International Journal of Industrial Ergonomics 52: 12-17. DOI: 10.1016/ j.ergon.2015.07.003.
Hagen K. B., Magnus P., Vetlesen K. 1998. Neck/shoulder and low-back disorders in the forestry industry: Relationship to work tasks and perceived psychosocial job stress. Ergonomics 41 (10): 1510-1518.
Helińska-Raczkowska L. 1996. Zmienność wilgotności i gęstości drewna w świeżo ściętych pniach brzozy (Betula pendula Roth.). Folia Forestalia Polonica B 27: 23-30.
Lachowicz H. 2012. Wieloczynnikowa analiza zmienności gęstości drewna brzozy brodawkowatej (Betula pendula Roth.). Sylwan 156 (6): 414-419.
Laurila J., Lauhanen R. 2010. Moisture content of Norway spruce stump wood at clear cutting areas and roadside storage sites. Silva Fennica 44 (3): 427-434.
Leśnictwo. 2016. GUS, Warszawa.
Liepin¸š K., Rieksts-Riekstin¸š J. 2013. Stem wood density of juvenile silver birch trees (Betula pendula Roth) from plantations on former farmlands. Baltic Forestry 19 (2): 179-186.
Longuetaud F., Mothe F., Santenoise P., Diop N., Dlouha J., Fournier M., Deleuze Ch. 2017. Patterns of within--stem variations in wood gravity and water content for five temperate tree species. Annals of Forest Science 74: 64.
Nurmi J., Hillebrand K. 2007. The characteristics of whole-tree fuel stocks from silvicultural cleanings and thinnings. Biomass and Bioenergy 31 (6): 381-392.
Michalec K., Wąsik R., Barszcz A. 2016. Zmienność wybranych cech makrostruktury i gęstości drewna świerkowego (Picea abies (L.) Karst.) z regla dolnego i górnego. Sylwan 160 (10): 855-860.
Repola J. 2006. Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva Fennica 40 (4): 673-685.
Routa J., Kolström M., Ruotsalainen J., Sikanen L. 2015a. Precision measurement of forest harvesting residue moisture change and dry matter losses by constant weight monitoring. International Journal of Forest Engineering 26 (1): 71-83. DOI: 10.1080/14942119.2015.1012900.
Routa J., Kolström M., Ruotsalainen J., Sikanen L. 2015b. Validation of prediction models for estimating the moisture content of small diameter stem wood. Croatian Journal of Forest Engineering 36 (2): 283-291.
Rozporządzenie Ministra Pracy i Polityki Społecznej z dnia 14 marca 2000 r. w sprawie bezpieczeństwa i higieny pracy przy ręcznych pracach transportowych. 2000. Dz. U. Nr 26, poz. 313 ze zmianami.
Rozporządzenie Ministra Środowiska i Ministra Gospodarki z dnia 2 maja 2012 r. w sprawie określenia gęstości drewna. 2012. Dz. U. poz. 536.
Saralecos J. D., Keefe R. F., Tinkham W. T., Brooks R. H., Smith A., Johnson L. R. 2014. Effects of harvesting systems and bole moisture loss on weight scaling of Douglas-fir sawlogs (Pseudotsuga menziesii var. glauca Franco). Forests 5 (9): 2289-2306.
Stempski W. 2009. Effect of labour organisation on the level of energy expenditure and static loads of a worker in intermediate cutting. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 8 (2): 53-60.
Tomczak A., Grodziński G., Jakubowski M., Jelonek T., Grzywiński W. 2018. Effects of the short-term storage method on moisture loss and weight change in beech timber. Croatian Journal of Forest Engineering 39 (1): 35-43.
Tomczak A., Jakubowski M., Jelonek T., Wąsik R., Grzywiński W. 2016a. Mass and density of pine pulpwood harvested in selected stands from the Forest Experimental Station in Murowana Goślina. Acta Sci. Pol. Silv. Colendar. Ratio Ind. Lignar. 15 (2): 105-112. DOI: 10.17306/J.AFW.2016.2.13.
Tomczak A., Jelonek T. 2015. Mass and density of birch pulpwood harvested from stands in different types of forest habitats. Forestry Letters 108: 27-31.
Tomczak A., Jelonek T., Jakubowski M., Grzywiński W., Kryger G. 2015a. Weight and green density of birch pulpwood harvested from the selected stands of Kaczory Forest Inspectorate. Ann. WULS – SGGW, For. and Wood Technol. 91: 165-171.
Tomczak A., Jelonek T., Jakubowski M., Wąsik R., Jaszczak A. 2015b. Weight and green density of oak pulpwood harvested from the selected stands of Łąck Forest Inspectorate. Ann. WULS – SGGW, For. and Wood Technol. 91: 172-178.
Tomczak A., Jelonek T., Leszczyński N., Korzeniewicz R. 2017. Naturalne suszenie surowca drzewnego w miejscu pozyskania. Sylwan 161 (11): 898-908.
Tomczak A., Jelonek T., Zoń L. 2010. Porównanie wybranych właściwości fizycznych drewna młodocianego i dojrza-łego sosny zwyczajnej (Pinus sylvestris L.) z drzewostanów rębnych. Sylwan 154 (12): 809-817.
Tomczak A., Wesołowski P., Jelonek T., Jakubowski M. 2016b. Utrata masy i zmiany gęstości średniowymia-rowego surowca sosnowego pozyskanego i magazynowanego w okresie letnim. Sylwan 160 (8): 619-626.
Trzciński G., Moskalik T., Wojtan R., Tymendorf Ł. 2017. Zmienność ładunków i masy całkowitej zestawów wy-wozowych przy transporcie drewna. Sylwan 161 (12): 1026-1034.
Viherä-Aarnio A., Velling P. 2017. Growth, wood density and bark thickness of silver birch originating from the Baltic countries and Finland in two Finnish provenance trials. Silva Fennica 51 (4).
Visser R., Berkett H., Spinelli R. 2014. Determining the effect of storage conditions on the natural drying of radiata pine logs for use energy. New Zealand Journal of Forest Science 44 (3): 1-8. DOI: 10.1186/1179-5395-44-3.
Witkowska J., Lachowicz H. 2013. Zmienność gęstości umownej drewna sosny zwyczajnej (Pinus sylvestris L.) w zależ-ności od wybranych czynników. Sylwan 157 (5): 336-347.